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Foreword

It is both a rare privilege and a distinct challenge to prepare a short foreword to this
volume of the Handbook of Nanotechnology. So, why me and why did I agree? The
answer to that is certainly not the usual answer. Traditionally, someone pre-eminent
in the field of nanometer structures would be asked to provide a short overview of
this subfield, its importance, and its trajectory. Obviously, I am not an expert in
this particular branch of science and technology; the fact is that I am intellectually
challenged by the material in its totality even though I feel comfortable and at home
with a significant fraction of that totality as stand-alone components.

The answer to “why me?” is perhaps because I have always championed the
integrated approach to science and engineering, specifically optical science and
engineering. This approach involves the integration of theory, modeling, setting up
and evaluating specific examples, testing those examples, and applying the results
to specific experimental and engineering studies. The resultant knowledge is then
used to devise new technology, implement that technology, and apply it to problem
solving and to the development of new components and systems. The final step
is to design and create new instruments and products to serve the local world in
which we live.

Having now taken the time to accept the challenge of working through this
volume, I can certainly report that it was well worth the effort. Those readers who
follow my example will find that it will provide a significant stimulation to those al-
ready working in the field and encourage others to make an intellectual investment
in moving nanotechnology forward.

This handbook is not presenting a fully developed theoretical model, but is
presenting significant theory based on sound physical laws augmented by other
approaches to provide a framework to test ideas and make progress. We have
all learned over the years that there are a number of valuable ways to approach
the mathematical description of physical observations: modeling, simulation, al-
gorithms, interactive processes, transformations to other spaces and coordinates,
curve fitting, and statistical methods, to name a few. The reader will find many of
these techniques used in the text.

There is no doubt that nanotechnology will play a very important role in the
coming years in a variety of areas that are listed in Professor Lakhtakia’s preface
and in the table of contents. These areas will certainly be interdisciplinary between
science and engineering, but also interdisciplinary in the traditional sense between
optical science, optical engineering mechanics, electronics, material science, etc.

ix
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x Foreword

It is not without significance that this volume is published as a joint venture be-
tween SPIE—The International Society for Optical Engineering and ASME, The
American Society of Mechanical Engineering.

My expectation (and hence my prediction) is that this volume may well become
a milestone volume for some time to come with perhaps new editions in the future
as the field progresses. I hope the editor will ask someone more qualified than I am
to prepare the foreword to future editions!

Brian J. Thompson
University of Rochester

May 2004
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Preface

The Handbook of Nanotechnology series is intended to provide a reference to re-
searchers in nanotechnology, offering readers a combination of tutorial material
and review of the state of the art. This volume focuses on modeling and simula-
tion at the nanoscale. Being sponsored by both SPIE—The International Society
for Optical Engineering and the American Society of Mechanical Engineering, its
coverage is confined to optical and mechanical topics.

The eight substantive chapters of this volume—entitled Nanometer Struc-
tures: Theory, Modeling, and Simulation—cover nanostructured thin films, pho-
tonic bandgap structures, quantum dots, carbon nanotubes, atomistic techniques,
nanomechanics, nanofluidics, and quantum information processing. Modeling and
simulation research on these topics has acquired a sufficient degree of maturity
as to merit inclusion. While the intent is to serve as a reference source for expert
researchers, there is sufficient content for novice researchers as well. The level of
presentation in each chapter assumes a fundamental background at the level of an
engineering or science graduate.

I am appreciative of both SPIE and ASME for undertaking this project at a piv-
otal point in the evolution of nanotechnology, just when actual devices and appli-
cations seem poised to spring forth. My employer, Pennsylvania State University,
kindly provided me a sabbatical leave-of-absence during the Spring 2003 semester,
when the major part of my editorial duties were performed.

All contributing authors cooperated graciously during the various phases of
the production of this volume and its contents, and they deserve the applause of
all colleagues for putting their normal research and teaching activities aside while
writing their chapters for the common good. Tim Lamkins of SPIE Press coor-
dinated the production of this volume promptly and efficiently. I consider myself
specially privileged to have worked with all of these fine people.

Akhlesh Lakhtakia
University Park, PA

May 2004
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Chapter 1

Editorial
Akhlesh Lakhtakia

1.1 Introduction

Can any community of researchers remain unaware of the idea of nanotechnology
today? Consider that the U.S. National Science Foundation launched the National
Nanotechnology Initiative in 2002, accompanied by a website1 with a special sec-
tion for kids and a projected annual funding that exceeds $600M. Consider also
that copies of Michael Crichton’s 2002 book Prey: A Novel, in which he intro-
duces the notion of predatory nanobots, have been lapped up members of both
sexes at $27 per volume. Not surprisingly, pundits have pronounced on the future
of nanotechnology in numerous publications.2–6 Real as well as virtual journals on
nanotechnology have sprouted, and not a week passes by when either a new con-
ference on nanotechnology is not announced or a new book on nanotechnology is
not published. Nanotechnology is shaping up as a megaideology—for the solution
of any problem afflicting humanity—in the minds of many researchers as well as
those who control research funds; and it could very well become a gigaideology
when fully coupled in the United States with the theme of homeland security.

Skepticism about nanotechnology as a panacea has also been offered, on
economic,7 environmental,8 as well as ethical9 grounds. Indeed, beginning in the
Iron Age and perhaps even earlier, our history provides numerous instances of false
promises and unexpectedly deleterious outcomes of technological bonanzas. Yet,
there is no doubt that we are materially better off than our great-grandparents were,
leave aside our immediate evolutionary precursor species—and mostly because of
technological progress. Therefore, even though nanotechnology may be a double-
edged sword, we may be able to wield it in such a way as to cause the least harm
all around.

Nanotechnology spans a vast mindscape in the world of academic, industrial,
and governmental research; and I must stress that it is still in an embryonic stage
despite a history that, some researchers say, spans two decades. The decision by
both SPIE and ASME to launch the Handbook of Nanotechnology series therefore
came at a very appropriate time. It will provide guidance on the state of the art to

1
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2 Akhlesh Lakhtakia

burgeoning ranks of nanotechnology researchers, and thus shape the contours of
both experimental and theoretical research.

A huge fraction of nanotechnology research output is focused on synthesis and
characterization of materials. Considerable attention is paid to potential and prim-
itive devices as well, chiefly for biomedical applications and nanoelectromechani-
cal systems. Reported research on modeling and simulation in nanotechnology, the
scope of this volume, is scantier—as becomes evident on perusing the tables of
contents of relevant journals and conference proceedings.

In part, the preponderance of experimental research over theoretical research
in nanotechnology is due to the natural excitement about potentially revolution-
ary devices. In part also, the relative paucity of attention bestowed on modeling
and simulation in nanotechnology derives from the Janusian characteristic of the
nanoscale. Both macroscopic and molecular aspects apply at the nanoscale, some-
times simultaneously, sometimes not; and it becomes difficult to either handle to-
gether or decide between macroscopic and molecular approaches. This attribute of
theoretical nanotechnology is clearly evident in the following eight chapters.

1.2 Coverage

Solid slabs and crystals have long been the workhorse materials of optics. Their
nanotechnological counterparts today are thin solid films with engineered nano-
structure and photonic crystals. In Chapter 2, A. Lakhtakia and R. Messier sum-
marize developments regarding sculptured thin films (STFs). These films with uni-
directionally varying properties can be designed and realized in a controllable man-
ner using physical vapor deposition. The ability to virtually instantaneously change
the growth direction of their columnar morphology through simple variations in the
direction of the incident vapor flux leads to a wide spectrum of columnar forms.
These forms can be 2D and 3D. Nominal nanoscopic-to-continuum models provide
a way to extract structure-property relationships.

J. W. Haus describes, in Chapter 3, the optical properties of two- and three-
dimensionally periodically nonhomogeneous materials called photonic band gap
(PBG) structures. Analogous to crystals in some ways, a PBG structure enables the
transmission of light through it in certain frequency bands, but not in others. Ana-
lytical, semianalytical, and numerical methods are presented along with programs
for the reader to explore the band structure.

The last decade has witnessed an explosion in research on quantum dots.
Progress in semiconductor technology, chiefly on epitaxial growth and lithogra-
phy, has made it possible to fabricate structures wherein electrons are confined in
dots that are 1 to 2 nm in diameter. In Chapter 4, F. Boxberg and J. Tulkki dis-
cuss the physical principles as well as experiments along with the first expected
commercial applications of quantum dots.

In Chapter 5, S. A. Maksimenko and G. Ya. Slepyan formulate the nano-
electromagnetics of low-dimensional structures exemplified by carbon nanotubes
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Editorial 3

and quantum dots. A wide range of theoretical results on the electromagnetic prop-
erties of carbon nanotubes as quasi-1D structures is presented in the first part of this
chapter, spanning linear electrodynamics, nonlinear optical effects, and founda-
tions of their quantum electrodynamics. In the second part of this chapter, a quan-
tum dot is modeled as a spatially localized, two-level quantum oscillator illumi-
nated by either classical or quantum light.

The availability of powerful supercomputers during the last decade has led
to a proliferation of numerical studies on atomistic methods, such as molecular
dynamics and Monte Carlo methods, which are grounded in classical statistical
mechanics. Given a model for interaction between the discrete interacting units—
howsoever small—of a material system, an energy formulation can be undertaken,
and the microscopic states of that system can be sampled either deterministically or
stochastically. P. A. Deymier, V. Kapila, and K. Muralidharan describe both classes
of methods in Chapter 6.

In addition to electromagnetic modeling, mechanical modeling of devices is
necessary for both fabrication and operation. In Chapter 7, therefore, V. B. Shenoy
undertakes a discussion of mechanics at the nanoscale. The multiscale methods
described in this chapter are meant to model the nanoscale mechanical behavior
of materials as well as the mechanical behavior of nanostructures. Traditional con-
tinuum approaches having severe limitations at the nanoscale, atomistic methods
must be resorted to. But atomistic methods are computationally intensive, which
has engendered the emergence of hybrid methods.

The great potential of nanotechnology for biomedical applications has led to
massive interest in nanofluidics. In Chapter 8, P. Koumoutsakos, U. Zimmerli,
T. Werder, and J. H. Walther present a detailed account of nanoscale fluid mechan-
ics. While discussing computational issues, the authors emphasize the choices of
molecular interaction potentials and simulation boundary conditions, which criti-
cally control the physics of fluids. A careful review of experimental research is also
provided.

The unremitting increase of device density in semiconductor chips brings quan-
tum effects into the picture. Control of these quantum effects could be exploited
to build quantum computers that would be more efficient than classical computers
for some tasks. Whereas quantum computing devices are best described as barely
embryonic, the mathematics of quantum information processing is progressing by
leaps and bounds. A comprehensive account of quantum information processing is
provided in Chapter 9 by M. B. Ruskai.

1.3 Concluding remark

The eight substantive chapters of Nanometer Structures: Theory, Modeling, and
Simulation address those topics in nanotechnology that have acquired a reasonable
degree of theoretical maturity in my opinion. No doubt, so rapid is the pace of
progress in nanotechnology that later editions of this volume, not to mention vol-
umes produced in the future by others, will offer coverage of topics neglected here.
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4 Akhlesh Lakhtakia

In the meanwhile, I tender my apologies to any reader who feels that his or her area
of theoretical research, modeling, and simulation suffered from editorial myopia.
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6 Akhlesh Lakhtakia and Russell Messier

2.1 Introduction

Sculptured thin films (STFs) are nanostructured materials with unidirectionally
varying properties that can be designed and realized in a controllable manner using
century-old techniques of physical vapor deposition (PVD).1–4 The ability to vir-
tually instantaneously change the growth direction of their columnar morphology
through simple variations in the direction of the incident vapor flux leads to a wide
spectrum of columnar forms. These forms can be (i) 2D, ranging from the simple
slanted columns and chevrons to the more complex C- and S-shaped morphologies;
and (ii) 3D, including simple helixes and superhelixes. A few examples of STFs
are presented in Figs. 2.1 and 2.2.

For most optical applications envisioned, the column diameter and the column
separation normal to the thickness direction of any STF should be constant. The
column diameter can range from about 10 to 300 nm, while the density may lie
between its theoretical maximum value to less than 20% thereof. The crystallinity
must be at a scale smaller than the column diameter. The chemical composition is
essentially unlimited, ranging from insulators to semiconductors to metals. Despite
the fact that precursors of STFs have been made for over a century,5–12 systematic

(a) (b) (c)

Figure 2.1 Scanning electron micrographs of sculptured thin films made of magnesium
fluoride (MgF2) with 2D morphologies: (a) 7-section zigzag, (b) C shaped, and (c) S shaped.

(a) (b)

Figure 2.2 Scanning electron micrographs of sculptured thin films with 3D morphologies:
(a) helical, made of silicon oxide (SiO), and (b) superhelical, made of MgF2.
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Sculptured Thin Films 7

exploration of the science and technology of STFs began only during the mid-
1990s.3,4,13,14

At visible and infrared wavelengths, a single-section STF is a unidirectionally
nonhomogeneous continuum with direction-dependent properties. Several sections
can be grown consecutively into a multisection STF, which can be conceived of as
an optical circuit that can be integrated with electronic circuitry on a chip. Being
porous, a STF can act as a sensor of fluids and also can be impregnated with liquid
crystals for switching applications. Application as low-permittivity barrier layers
in electronic chips has also been suggested. The first optical applications of STFs
saw the light of the day in 1999.

This chapter is organized as follows: Sec. 2.2 traces the genesis of STFs from
the columnar thin films first grown in the 1880s to the emergence of the STF con-
cept during the 1990s. Section 2.3 describes STFs as unidirectionally nonhomoge-
neous, bianisotropic continuums at optical wavelengths; provides a nominal model
to connect the nanostructure to the macroscopic electromagnetic response proper-
ties; and presents a matrix method to handle boundary value problems. Dielectric
STFs are described in Sec. 2.4, followed by a survey of optical as well as other
applications of STFs in Sec. 2.5. Directions for future research are suggested in
Sec. 2.6.

A note on notation: Vectors are in boldface; dyadics (Ref. 15, Ch. 1) are in
normal face and double underlined; column vectors and matrixes are in boldface
and enclosed within square brackets. A dyadic can be interpreted as a 3× 3 matrix
throughout this chapter. The position vector is denoted by r = xux + yuy + zuz;
the z axis is parallel to the thickness direction of all films; and an exp(−iωt) time
dependence is implicit for all electromagnetic fields.

2.2 Genesis

2.2.1 Columnar thin films

Chronologically as well as morphologically, it is sensible to begin with the so-
called columnar thin films (CTFs). Vapor from a source boat is directed towards
a substrate in PVD, as shown in Fig. 2.3. Both sputtering and evaporation PVD
techniques16 deposit films at sufficiently low vapor pressures, so that the adatoms
move toward the growing film surface with ballistic trajectories for which an aver-
age direction of arrival can be defined. At a low substrate temperature (�0.3 of the
melting point of the depositing material), the arriving adatoms move very little on
condensation. Instead, clustering at the 1- to 3-nm level occurs. The clusters evolve
into clusters of clusters, which in turn evolve into expanding cones that compete
with their neighbors for growth.17,18 The surviving columns grow in the direc-
tion of the vapor flux, albeit somewhat closer to the substrate normal, as shown in
Fig. 2.4.

The growth of nonnormal CTFs by the evaporation PVD technique at oblique
angles is usually credited to Kundt5 in 1885. It was the anisotropy of the op-
tical properties of the films that focused interest on the columnar morphology.
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8 Akhlesh Lakhtakia and Russell Messier

Figure 2.3 Schematic of the basic system for physical vapor deposition of columnar thin
films on planar substrates. Although an electron-beam evaporation point source is shown,
distributed directional sources—such as those used in sputter deposition—can be used to
similar effect.

Figure 2.4 Coordinate system, the vapor incidence angle χv , and the column inclination
angle χ .

The addition of ion bombardment during growth—either in sputtering or ion-
assisted evaporation techniques—can eliminate columns, thereby yielding dense,
smooth and stable thin films that meet the stringent requirements for laser-based
applications of optical coatings.19

Significantly, an intermediate state occurs between columnar expansion and
the elimination of the columns. In that state, competition between neighboring
columns is frustrated20 and stable columns grow. This CTF morphology is achieved
either through intermediate levels of ion bombardment or simply by depositing
the films at oblique angles.21 The columns thus grow at a controllable angle
χ ≥ 25 deg to the substrate, while the average direction of the incident vapor flux
is delineated by the angle χv ≤ χ in Fig. 2.4.

In an extensive review of both experimental and ballistic aggregation modeling
studies of obliquely deposited CTFs, van Kranenburg and Lodder22 concluded that
elongated clusters and columns generally pointing in the direction of the incom-
ing vapor flux are a direct consequence of the adatomic self-shadowing process;
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Sculptured Thin Films 9

furthermore, when viewed from directly overhead, the length of the long axis rel-
ative to the width of the cluster increases markedly for χv < 30 deg. The columns
become separated and begin to grow as noncompeting cylinders—with elliptical
cross sections due to anisotropy in self-shadowing21,22—as χv is decreased fur-
ther. The columns become more separated in the vapor incidence direction due
to the increased shadowing effect in the longitudinal direction (parallel to the va-
por incidence plane), while shadowing in the transverse direction is unaffected by
changes in χv . This leads to a higher material density in the transverse direction.

As the columnar cross-sectional dimensions are less than or equal to 150 nm
for a large variety of CTFs, these films can be considered effectively as homo-
geneous orthorhombic continuums in the visible and infrared regimes, depending
on the constitutive parameters of the deposited material.23 Generally thought of
as dielectric materials, their optical birefringence has long been appreciated and
exploited.24,25

2.2.2 Primitive STFs with nematic morphology

A seminal event occurred in 1966 that eventually led to the emergence of the STF
concept in 1994.1 While a CTF was growing, Nieuwenhuizen and Haanstra de-
liberately altered χv to prove that columnar morphology “cannot be a result of the
method of preparation itself.”11 The resulting change in χ was accomplished while
the film thickness grew by just ∼3 nm, the transition thus being practically abrupt
in comparison to optical wavelengths. Some two decades later, Motohiro and Taga
demonstrated that χ can be abruptly altered many times during growth,12 which is
the basis for realizing STFs with bent nematic morphologies.

Thus, primitive STFs with zigzag and chevronic morphologies came into ex-
istence. The similarity of CTFs to crystals had long been noticed in the optical
literature,24 so that the primitive STFs with nematic morphology can be consid-
ered as stacked crystalline plates. This has been astutely exploited for designing,
fabricating, and testing various optical devices.25,26 Furthermore, serial as well as
simultaneous bideposition of CTFs and chevronic STFs are now routine in the
manufacture of wave plates for the automobile industry.27,28

2.2.3 Chiral sculptured thin films

Another seminal event toward the emergence of the STF concept had already oc-
curred in 1959. Although it had evidently been ignored then, all credit for peri-
odic STFs with chiral (i.e., handed) morphology should be accorded to Young and
Kowal.8 Without actually seeing the anisotropic morphology of CTFs via scanning
electron microscopy or otherwise, but surmising it from the well-known effects of
anisotropy on optical response characteristics, these two pioneers consciously ro-
tated the substrate about the z axis constantly during growth to create thin films
with morphology predicted to display transmission optical activity. Most likely,
they were the first researchers to deliberately engineer thin-film morphology for
producing a nontrivial STF—one with a fully 3D morphology.
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10 Akhlesh Lakhtakia and Russell Messier

Remarkably, Young and Kowal inferred that “the [optical] activity of a helically
deposited film could be due to the co-operative action of a helically symmetrical
arrangement of crystallites, crystal growth or voids.” Furthermore, they conjec-
tured that the columnar direction could change virtually instantaneously and con-
tinuously with changes in the position and the orientation of the substrate. Happily,
the Young–Kowal technique of rotating the substrate, the helicoidal morphology
realized thereby, and the transmission optical activity of chiral STFs, were redis-
covered in the last decade.29–31

2.2.4 Sculptured thin films

Recognition came during the 1990s that a very wide variety of columnar morpholo-
gies is possible, and that preparation-property-application connections can be truly
engineered by coupling theoretical and experimental results.1,2

STFs are modifications of CTFs in which the column direction can be changed
almost abruptly and often, even continuously, during growth. When CTFs are ob-
liquely deposited, a wide variety of STF morphologies tailored at the nanoscale
are realizable by simple variations of two fundamental axes of rotation, either sepa-
rately or concurrently.19,29–40 These fundamental axes lead to two canonical classes
of STFs that have been termed

1. sculptured nematic thin films (SNTFs)33 and
2. thin-film helicoidal bianisotropic mediums (TFHBMs).1,29

More complex shapes and even multisections, in which either the material or the
shape or both are changed from section to section along the z axis, have been
executed.41,42

SNTF morphologies include such simple 2D shapes as slanted columns,
chevrons, and zigzags as well as the more complex C and S shapes; see Fig. 2.1.
The substrate must be rotated about the y axis, which lies in the substrate plane and
is perpendicular to the vapor incidence direction, while χv is varied either episod-
ically or continuously.33 One concern with this approach is related to the fact that
the density of a CTF is highly dependent4,33,35 on χv and, therefore, density vari-
ations are expected as a SNTF grows. The compensation of these variations is an
area of future research.

TFHBMs are fabricated by tilting the substrate at some oblique angle to the
incident vapor flux (i.e., χv ≤ 90 deg), followed by substrate rotation about the
z axis. Helicoidal morphologies result for constant rotational velocity about the
z axis.8,29 By varying the rotational velocity in some prescribed manner through-
out a rotational cycle, a slanted helicoidal structure occurs with the slant angle
controllable over all χ above its minimum value for static glancing angle depo-
sition. Furthermore, it is possible to engineer a wide range of superhelixes with
controlled handedness.4,19 The mass density as a function of film thickness is ex-
pected to remain constant since χv is fixed for TFHBMs, so long as the columns
attain a steady-state diameter in the early nucleation and growth stages.
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Sculptured Thin Films 11

2.3 Electromagnetic fundamentals

2.3.1 Linear constitutive relations

The macroscopic conception of STFs at optical wavelengths is as unidirectionally
nonhomogenous continuums, with the constitutive relations

D(r, ω)= ε0
[

ε
r
(z, ω) ·E(r, ω)+ α

r
(z, ω) ·H(r, ω)

]
B(r, ω)= µ0

[
β

r
(z, ω) · E(r, ω)+µ

r
(z, ω) · H(r, ω)

]
 , (2.1)

indicating that the z axis of the coordinate system is aligned parallel to the direction
of nonhomogeneity. These relations model the STF as a bianisotropic continuum,43

with ε0 = 8.854× 10−12 F m−1 and µ0 = 4π × 10−7 H m−1 as the constitutive
parameters of free space (i.e., vacuum). Whereas the relative permittivity dyadic
ε

r
(z, ω) and the relative permeability dyadic µ

r
(z, ω) represent the electric and

magnetic properties, respectively, the dyadics α
r
(z, ω) and β

r
(z, ω) delineate the

magnetoelectric properties.44 These four constitutive dyadics have to be modeled
with guidance from the STF morphology.

All of the columns in a single-section STF are nominally parallel to each other,
and can be assumed to be rectifiable curves. A tangential unit vector can be pre-
scribed at any point on a curves,45 as shown in Fig. 2.5. Differential geometry can
then be used to prescribe an osculating plane for the curve, leading to the identi-
fication of a normal unit vector. A third unit vector, called the binormal unit vec-
tor, is perpendicular to the first two unit vectors. These vectors may be written as
S(z) ·uτ , S(z) ·un, and S(z) ·ub, for any particular column in the chosen STF. The
rotation dyadic S(z) incorporates the locus of points on the axis of the column;
while the unit vectors uτ , un, and ub should be chosen with the columnar cross
section in mind. The rotation dyadic is some composition of the following three

Figure 2.5 Tangential, normal, and binormal unit vectors at a point on a curve.
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12 Akhlesh Lakhtakia and Russell Messier

elementary rotation dyadics:

S
x
(z)= uxux + (uyuy + uzuz) cos ξ(z)+ (uzuy − uyuz) sin ξ(z), (2.2)

S
y
(z)= uyuy + (uxux + uzuz) cos τ (z)+ (uzux − uxuz) sin τ (z), (2.3)

S
z
(z)= uzuz + (uxux + uyuy) cos ζ(z)+ (uyux − uxuy) sin ζ(z). (2.4)

The angles ξ(z), τ (z), and ζ(z) can be prescribed piecewise. The choice

uτ = ux cosχ + uz sin χ, (2.5)

un =−ux sin χ + uz cosχ, (2.6)

ub =−uy, (2.7)

recalls the column inclination angle χ of CTFs, and is most appropriate for STFs.
Accordingly, the linear constitutive relations of a single-section STF are set up

as3,46

D(r, ω)= ε0 S(z) · [
ε

ref
(ω) · ST (z) · E(r, ω)+ α

ref
(ω) · ST (z) ·H(r, ω)

]
, (2.8)

B(r, ω)= µ0 S(z) · [
β

ref
(ω) · ST (z) ·E(r, ω)+µ

ref
(ω) · ST (z) ·H(r, ω)

]
. (2.9)

The dyadics ε
ref

(ω)= ST (z) · ε
r
(z, ω) · S(z), etc., are called the reference con-

stitutive dyadics, because S(z0) = I in some reference plane z = z0. Here and
hereafter, I = uxux + uyuy + uzuz is the identity dyadic.

The foregoing equations reflect the fact that the morphology of a single-section
STF in any plane z= z1 can be made to nominally coincide with the morphology
in another plane z = z2 with the help of a suitable rotation. In conformity with
the requirement that uy · S(z)≡ uy ∀z, the choice S(z)= S

y
(z) is appropriate for

STFs with nematic morphology. For TFHBMs, the correct choice is S(z)= S
z
(z).

Although a helicoidal STF need not be periodically nonhomogeneous along the z

axis, it is easy to fabricate such films with periods chosen anywhere between 50
and 2000 nm. Chiral STFs are generally analyzed as periodic dielectric TFHBMs
with ζ(z)= πz/
 in Eq. (2.4), where 2
 is the structural period.13,47 More com-
plicated specifications of S(z) are possible—to wit, slanted chiral STFs.48,49

The choice

σ
ref

(ω)= σa(ω)unun+ σb(ω)uτ uτ + σc(ω)ubub (2.10)

is in accord with the local orthorhombicity of STFs. The density anisotropy occur-
ring during deposition is thus taken into account. For magneto-optics, gyrotropic
terms such as iσg(ω)uτ × I can be added to the right side of Eq. (2.10).50

A multisection STF is a cascade of single-section STFs fabricated in an inte-
grated manner.2 Substrate rotational dynamics may be chosen differently for each
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Sculptured Thin Films 13

section, and the rotation dyadic S(z) then must be specified sectionwise. The de-
posited material(s) and/or the vapor incidence angle may also be changed from
section to section, so that the constitutive dyadics ε

ref
(ω), µ

ref
(ω), α

ref
(ω), and

β
ref

(ω) are different for each section. Furthermore, the constitutive dyadics will

be affected by the substrate rotational dynamics in each section. Since renucle-
ation clusters are 3 to 5 nm in diameter, the transition between two consecutive
sections is virtually abrupt and, therefore, optically insignificant.41,42

2.3.2 From the nanostructure to the continuum

Implicit in the constitutive relations of Eq. (2.1) is the assumption of a STF as a
continuous medium. The relationship of the nanostructure to the macroscopic con-
stitutive dyadics must be modeled adequately for intelligent design and fabrication
of STF devices.

As any STF can be viewed as a composite material with two different con-
stituent materials, the constitutive dyadics ε

r
(z, ω), etc., must emerge from both

composition and morphology. The mathematical process describing this transition
from the microscopic to the continuum length scales is called homogenization. It
is very commonly implemented in various forms for random distributions of elec-
trically small inclusions in an otherwise homogeneous host material (Ref. 23 and
Ref. 51, Ch. 4); and homogenization research continues to flourish.52,53

But, as the inclusions are randomly distributed, the effective constitutive
dyadics computed with any particular homogenization formalism are independent
of position. In contrast, a STF is effectively a nonhomogeneous continuum, be-
cause the orientation of inclusions of the deposited material must depend on z.
This is a serious difficulty, when devising structure-property relationships.

If the aim is just to construct a control model to span the nanostructure-
continuum divide for manufacturing STFs with desirable optical response char-
acteristics, the homogenization procedure can be localized.54 In a nominal model
being presently developed,54–56 the deposited material as well as the voids are to be
thought of as parallel ellipsoidal inclusions in any thin slice of the STF parallel to
substrate plane. Each slice is homogenized in the local homogenization procedure.
But any two consecutive slices in a single-section STF are identical, except for a
small rotation captured by S(z). This dyadic is presumably known, either from ex-
amination of scanning electron micrographs or because it was programmed into the
fabrication process. Therefore, in this nominal model, the aim of the local homog-
enization procedure for a STF changes from estimating ε

r
(z, ω), etc., in Eq. (2.1)

to estimating ε
ref

(ω), etc., in Eqs. (2.8) and (2.9).
Suppose that the chosen single-section STF is made of a bianisotropic material

whose bulk constitutive relations are specified as

D(r, ω)= ε0
[

ε
s
(ω) ·E(r, ω)+ α

s
(ω) ·H(r, ω)

]
B(r, ω)= µ0

[
β

s
(ω) ·E(r, ω)+µ

s
(ω) ·H(r, ω)

]
 . (2.11)
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14 Akhlesh Lakhtakia and Russell Messier

The voids in the STF are taken to be occupied by a material with the following
bulk constitutive relations:

D(r, ω)= ε0
[

ε
v
(ω) ·E(r, ω)+ α

v
(ω) ·H(r, ω)

]
B(r, ω)= µ0

[
β

v
(ω) ·E(r, ω)+µ

v
(ω) ·H(r, ω)

]
 . (2.12)

The voids may not necessarily be vacuous; in fact, scanning electron microscopy
shows that voids should be considered as low-density regions. The nominal poros-
ity of the STF is denoted by fv , (0 ≤ fv ≤ 1), which is actually the void volume
fraction.

Each column in the chosen STF is represented as a string of ellipsoids in the
nominal model, as shown in Fig. 2.6. In the thin slice containing the reference plane
z = z0—defined by the condition S(z0)= I—the surface of a particular ellipsoid
is delineated by the position vectors

r(ϑ, ϕ)= δsU
s

· (sin ϑ cos ϕ un + cosϑ uτ + sin ϑ sin ϕ ub),

ϑ ∈ [0, π ], ϕ ∈ [0, 2π ], (2.13)

with respect to the ellipsoidal centroid. In this equation, δs is a linear measure of
size and the shape dyadic

U
s
= unun + γ (s)

τ uτ uτ + γ
(s)
b ubub. (2.14)

Setting the shape factors γ
(s)
τ � 1 and γ

(s)
b � 1 will make each ellipsoid resemble

a needle with a slight bulge in its middle part. The voids in the reference thin slice
can also be represented by similarly aligned ellipsoids whose shape dyadic is

U
v
= unun+ γ (v)

τ uτ uτ + γ
(v)
b ubub. (2.15)

Figure 2.6 A column modeled as a string of electrically small ellipsoids, and the shape
factors γτ and γb of an ellipsoid.
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Sculptured Thin Films 15

The use of 6× 6 matrixes provides notational simplicity for treating electro-
magnetic fields in bianisotropic materials. Let us therefore define the 6× 6 consti-
tutive matrixes

[C]ref,s,v =
ε0[ε]ref,s,v ε0[α]ref,s,v

µ0[β]ref,s,v µ0[µ]ref,s,v

 , (2.16)

where [ε]ref is the 3× 3 matrix equivalent to ε
ref

, etc. The ω dependences of var-
ious quantities are not explicitly mentioned in this and the following equations for
compactness. Many homogenization formalisms can be chosen to determine [C]ref
from [C]s and [C]v , but the Bruggeman formalism52,55 appears particularly attrac-
tive because of its simplicity as well as its widespread use in optics.23

For this purpose, the 6× 6 polarizability density matrixes

[A]s,v = ([C]s,v − [C]ref) · {[I] + iω[D]s,v · ([C]s,v − [C]ref)
}−1

(2.17)

are set up, where [I] is the 6× 6 identity matrix. The 6× 6 depolarization matrixes
[D]s,v must be computed via 2D integration as follows:

[D]s,v = 1

4πiωε0µ0

∫ 2π

ϕ=0

∫ π

ϑ=0

sin ϑ

�s,v

×
µ0[w]s,v[µ] ref[w]s,v −ε0[w]s,v[α] ref[w]s,v

−µ0[w]s,v[β] ref[w]s,v ε0[w]s,v[ε] ref[w]s,v

 dϑ dϕ. (2.18)

In the foregoing equation, the scalars

�s,v =
(
vs,v · ε

ref
·vs,v

)(
vs,v · µ

ref
·vs,v

)
−

(
vs,v · α

ref
·vs,v

)(
vs,v · β

ref
·vs,v

)
, (2.19)

the 3× 3 matrixes [w]s,v are equivalent to the dyads

w
s,v
= vs,vvs,v, (2.20)

and

vs,v = U−1
s,v

· (sin ϑ cosϕ un+ cos ϑ uτ + sin ϑ sin ϕ ub). (2.21)
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16 Akhlesh Lakhtakia and Russell Messier

The Bruggeman formalism requires the solution of the matrix equation

fv[A]v + (1− fv)[A]s = [0], (2.22)

with [0] as the 6× 6 null matrix. This equation has to be numerically solved for
[C]ref, and a Jacobi iteration technique is recommended for that purpose.52,56

The solution of Eq. (2.22) represents the homogenization of an ensemble of
objects of microscopic linear dimensions into a continuum. The quantities entering
S(z) are to be fixed prior to fabrication, as also are [C]s and [C]v . To calibrate
the nominal model presented, the shape dyadics U

s
and U

v
can be chosen by

comparison of the predicted [C] ref against measured data.57

2.3.3 Electromagnetic wave propagation

Electromagnetic wave propagation in a STF is best handled using 4× 4 matrixes
and column vectors of size 4. At any given frequency, with the transverse wave
number κ and the angle ψ fixed by excitation conditions, the following spatial
Fourier representation of the electric and the magnetic field phasors is useful:

E(r, ω)= e(z, κ, ψ, ω) exp[iκ(x cosψ + y sin ψ)]
H(r, ω)= h(z, κ, ψ, ω) exp[iκ(x cosψ + y sin ψ)]

}
. (2.23)

Substitution of the foregoing representation into the source-free Maxwell curl
postulates ∇ × E(r, ω) = iωB(r, ω) and ∇ × H(r, ω) = −iωD(r, ω), followed
by the use of the constitutive relations, leads to four ordinary differential equa-
tions and two algebraic equations. The phasor components ez(z, κ, ψ, ω) and
hz(z, κ, ψ, ω) are then eliminated to obtain the 4× 4 matrix ordinary differential
equation (MODE)46

d

dz
[f(z, κ, ψ, ω)] = i[P(z, κ, ψ, ω)][f(z, κ, ψ, ω)]. (2.24)

In this equation,

[f(z, κ, ψ, ω)] =


ex(z, κ, ψ, ω)

ey(z, κ, ψ, ω)

hx(z, κ, ψ, ω)

hy(z, κ, ψ, ω)

 (2.25)

is a column vector, and [P(z, κ, ψ, ω)] is a 4 × 4 matrix function of z that can
be easily obtained using symbolic manipulation programs. The 4× 4 system can
reduce to two autonomous 2× 2 systems in special cases, e.g., for propagation in
the morphologically significant planes of single-section SNTFs.58
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Analytic solution of Eq. (2.24) can be obtained, provided [P(z, κ, ψ, ω)] is not
a function of z {i.e., [P(z, κ, ψ, ω)] = [Pcon(κ, ψ, ω)]}—which happens for CTFs.
Exact analytic solution of Eq. (2.24) has been obtained also for axial propagation
(i.e., κ = 0) in periodic TFHBMs and chiral STFs.47,59,60 A solution in terms of
a convergent matrix polynomial series is available for nonaxial propagation (i.e.,
κ 	= 0) in periodic TFHBMs.61–64

More generally, only a numerical solution of Eq. (2.24) can be obtained. If the
matrix [P(z, κ, ψ, ω)] is a periodic function of z, a perturbative approach65 can
be used to obtain simple results for weakly anisotropic STFs;61,66 coupled-wave
methods can come in handy, if otherwise.48,67–69

But if [P(z, κ, ψ, ω)] is not periodic, the constitutive dyadics can be assumed
as piecewise constant—i.e., constant over slices of thickness �z—and the approx-
imate transfer equation46

[f(z+�z, κ, ψ, ω)] 
 exp

{
i

[
P

(
z+ �z

2
, κ, ψ, ω

)]
�z

}
[f(z, κ, ψ, ω)] (2.26)

can be suitably manipulated with appropriately small values of �z. This numerical
technique has been applied to chiral STFs.48,62

Regardless of the method used to solve Eq. (2.24), it can be used to formulate
a matrizant. Defined via the transfer equation

[f(z, κ, ψ, ω)] = [M(z, κ, ψ, ω)] [f(0, κ, ψ, ω)], (2.27)

the matrizant [M] is the solution of the differential equation

d

dz
[M(z, κ, ψ, ω)] = i[P(z, κ, ψ, ω)] [M(z, κ, ψ, ω)]. (2.28)

Only one boundary value of the matrizant is needed to determine it uniquely, and
that boundary value is supplied by Eq. (2.27) as

[M(0, κ, ψ, ω)] = [I], (2.29)

where [I] is the 4× 4 identity matrix.
Finally, quasi-static solutions of Eq. (2.24) can be obtained in the same ways,

after taking the limit ω→ 0 ab initio.70 These are useful if applications of STFs
in the microwave and lower-frequency regimes are desired—for example, as inter-
layer dielectrics in integrated electronic circuits71,72 and for humidity sensors that
rely on capacitance change induced by altered humidity.73

2.3.4 Reflection and transmission

The quintessential problem for optics is that of the reflection and transmission of a
plane wave by a STF of thickness L. Suppose that the half-spaces z≤ 0 and z≥ L
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are vacuous. An arbitrarily polarized plane wave is obliquely incident on the STF
from the half-space z ≤ 0. As a result, there is a reflected plane wave in the same
half-space, as well as a transmitted plane wave in the half-space z≥ L.

The propagation vector of the obliquely incident plane wave makes an angle
θ ∈ [0, π/2) with respect to the +z axis, and is inclined to the x axis in the xy

plane by an angle ψ ∈ [0, 2π ], as shown in Fig. 2.7. Accordingly, the transverse
wave number

κ = k0 sin θ, (2.30)

where k0 = ω
√

ε0µ0 is the free-space wave number. Evanescent plane waves can
be taken into account as well by making the angle θ complex-valued.74

The incident plane wave is conventionally represented in terms of linear po-
larization components in the optics literature. An equivalent description in terms
of circular polarization components is more appropriate for chiral STFs. Thus, the
incident plane wave is delineated by the phasors

einc(z)=


(ass+ app+)eik0z cosθ(

aL

is− p+√
2
− aR

is+ p+√
2

)
eik0z cos θ

hinc(z)=


η−1

0 (asp+ − aps)eik0z cosθ

−iη−1
0

(
aL

is− p+√
2
+ aR

is+ p+√
2

)
eik0z cosθ


, z≤ 0, (2.31)

where η0 = √µ0/ε0 is the intrinsic impedance of free space; as and ap are the
amplitudes of the perpendicular- and parallel-polarized components, respectively;
aL and aR are the amplitudes of the left and right circularly polarized (LCP and

Figure 2.7 Propagation direction of incident plane wave.
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RCP) components; and the plane-wave polarization vectors

s=−ux sin ψ + uy cos ψ, (2.32)

p± =∓(ux cosψ + uy sin ψ) cos θ + uz sin θ (2.33)

are of unit magnitude. For notational simplicity, the dependences on κ , ψ , and ω

are explicitly mentioned from this point onward only if necessary.
The electromagnetic field phasors associated with the reflected and transmitted

plane waves, respectively, are expressed by

eref(z)=


(rss+ rpp−)e−ik0z cosθ(
−rL

is− p−√
2
+ rR

is+ p−√
2

)
e−ik0z cosθ

href(z)=


η−1

0 (rsp− − rps)e−ik0z cos θ

iη−1
0

(
rL

is− p−√
2
+ rR

is+ p−√
2

)
e−ik0z cosθ


, z≤ 0, (2.34)

and

etr(z)=


(tss+ tpp+)eik0(z−L) cosθ(

tL
is− p+√

2
− tR

is+ p+√
2

)
eik0(z−L) cosθ

htr(z)=


η−1

0 (tsp+ − tps)eik0(z−L) cosθ

−iη−1
0

(
tL

is− p+√
2
+ tR

is+ p+√
2

)
eik0(z−L) cosθ


, z≥L. (2.35)

The amplitudes rs,p and ts,p indicate the strengths of the perpendicular- and
parallel-polarized components of the reflected and transmitted plane waves, both
of which are elliptically polarized in general. Equivalently, the amplitudes rL,R and
tL,R indicate the strengths of the LCP and RCP components.

The transfer matrix of a STF of thickness L is [M(L, κ, ψ, ω)], because the
relationship

[f(L, κ, ψ, ω)] = [M(L, κ, ψ, ω)] [f(0, κ, ψ, ω)] (2.36)

between the two boundary values of [f(z, κ, ψ, ω)] follows from Eq. (2.27). As
the tangential components of E(r, ω) and H(r, ω) must be continuous across the
planes z= 0 and z= L, the boundary values [f(0, κ, ψ, ω)] and [f(L, κ, ψ, ω)] can
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be fixed by virtue of Eqs. (2.31) to (2.35). Hence,

[f(0, κ, ψ, ω)] = [K(θ, ψ)]


as

ap

rs

rp

= [K(θ, ψ)]√
2


i(aL − aR)

−(aL + aR)

−i(rL − rR)

rL+ rR

 , (2.37)

[f(L, κ, ψ, ω)] = [K(θ, ψ)]


ts
tp
0
0

= [K(θ, ψ)]√
2


i(tL − tR)

−(tL + tR)

0
0

 , (2.38)

where the 4× 4 matrix

[K(θ, ψ)] =


− sin ψ − cos ψ cosθ − sin ψ cosψ cosθ

cosψ − sin ψ cos θ cosψ sin ψ cosθ

−η−1
0 cosψ cos θ η−1

0 sin ψ η−1
0 cos ψ cosθ η−1

0 sin ψ

−η−1
0 sin ψ cosθ −η−1

0 cosψ η−1
0 sin ψ cos θ −η−1

0 cos ψ

 .

(2.39)

The plane-wave reflection/transmission problem then amounts to four simulta-
neous, linear algebraic equation stated in matrix form as

ts
tp
0
0

= [K(θ, ψ)]−1 [M(L, κ, ψ, ω)] [K(θ, ψ)]


as

ap

rs

rp

 , (2.40)

equivalently,
i(tL − tR)

−(tL + tR)

0
0

= [K(θ, ψ)]−1 [M(L, κ, ψ, ω)] [K(θ, ψ)]


i(aL − aR)

−(aL + aR)

−i(rL − rR)

rL+ rR

 .

(2.41)

These sets of equations can be solved by standard matrix manipulations to com-
pute the reflection and transmission amplitudes when the incidence amplitudes are
known.

It is usually convenient to define reflection and transmission coefficients. These
appear as the elements of the 2× 2 matrixes in the following relations:[

rs

rp

]
=

[
rss rsp

rps rpp

] [
as

ap

]
,

[
rL

rR

]
=

[
rLL rLR

rRL rRR

] [
aL

aR

]
, (2.42)[

ts
tp

]
=

[
tss tsp
tps tpp

] [
as

ap

]
,

[
tL
tR

]
=

[
tLL tLR

tRL tRR

] [
aL

aR

]
. (2.43)
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Copolarized coefficients have both subscripts identical, but cross-polarized coeffi-
cients do not. The relationships between the linear and circular coefficients are as
follows:

rss =−(rLL + rRR)− (rLR + rRL)

2

rsp = i
(rLL− rRR)+ (rLR − rRL)

2

rps =−i
(rLL− rRR)− (rLR − rRL)

2

rpp =−(rLL + rRR)+ (rLR + rRL)

2


, (2.44)

tss = (tLL + tRR)− (tLR + tRL)

2

tsp =−i
(tLL − tRR)+ (tLR − tRL)

2

tps = i
(tLL − tRR)− (tLR − tRL)

2

tpp = (tLL + tRR)+ (tLR + tRL)

2


. (2.45)

The square of the magnitude of a reflection/transmission coefficient is the cor-
responding reflectance/transmittance; thus, RLR = |rLR|2 is the reflectance corre-
sponding to the reflection coefficient rLR , and so on. The principle of conservation
of energy mandates the constraints

Rss +Rps + Tss + Tps ≤ 1
Rpp +Rsp + Tpp + Tsp ≤ 1
RLL +RRL+ TLL + TRL ≤ 1
RRR +RLR + TRR + TLR ≤ 1

 , (2.46)

with the inequalities turning to equalities only in the absence of dissipation.

2.4 Dielectric STFs

Despite the generality of Sec. 2.3, at this time it appears sufficient to model STFs
as dielectric materials. The constitutive relations of a dielectric STF are as follows:

D(r, ω)= ε0 ε
r
(z, ω) ·E(r, ω)

= ε0 S(z) · ε
ref

(ω) · ST (z) ·E(r, ω), (2.47)

B(r, ω)= µ0 H(r, ω). (2.48)
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Description of dielectric STFs is greatly facilitated by the definition of two auxil-
iary rotation dyadics

Ŝ
y
(χ)= uyuy + (uxux + uzuz) cosχ + (uzux − uxuz) sin χ, (2.49)

Ŝ
z
(h, σ )= uzuz + (uxux + uyuy) cos(hσ )+ (uyux − uxuy) sin(hσ ), (2.50)

and an auxiliary relative permittivity dyadic

εo

ref
(ω)= ε

ref
(ω)

∣∣∣
χ=0
= εa(ω)uzuz + εb(ω)uxux + εc(ω)uyuy. (2.51)

In these equations, h is the structural handedness parameter, which can take one of
only two values: either+1 for right-handedness or−1 for left-handedness. Locally
uniaxial STFs are accommodated by the relations εc(ω)= εa(ω) 	= εb(ω), but all
three scalars are different for local biaxiality.

2.4.1 Relative permittivity dyadics

The simplest STFs are, of course, CTFs whose relative permittivity dyadics do not
depend on z, i.e.,

εCTF
r

(z, ω)= ε
ref

(ω)= Ŝ
y
(χ) · εo

ref
(ω) · Ŝ

T

y
(χ). (2.52)

The relative permittivity dyadic of a SNTF is given by

εSNTF
r

(z, ω)= S
y
(z) · εo

ref
(ω) · ST

y
(z), (2.53)

where S
y
(z) is defined in Eq. (2.3). The angular function

τ (z)= πz



(2.54)

for a C-shaped SNTF, and

τ (z)=


πz



, 2m <

z



< 2m+ 1, m= 0, 1, 2, . . .

−πz



, 2m− 1 <

z



< 2m, m= 1, 2, 3, . . . ,

(2.55)

for an S-shaped SNTF, where 
 is the thickness of a C section, as shown in Fig. 2.8.
Parenthetically, if it is convenient to have the morphology in the yz plane, then
S

y
(z) should be replaced by S

x
(z) of Eq. (2.2).
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The relative permittivity dyadic of a dielectric TFHBM is decomposed into
simple factors as

εTFHBM
r

(z, ω)= S
z
(z) · Ŝ

y
(χ) · εo

ref
(ω) · Ŝ

T

y
(χ) · ST

z
(z), (2.56)

where S
z
(z) is specified by Eq. (2.4). Chiral STFs are periodically nonhomoge-

neous, and their relative permittivity dyadics are better represented in the form

εchiral STF
r

(z, ω)= Ŝ
z

(
h,

z




)
· Ŝ

y
(χ) · εo

ref
(ω) · Ŝ

T

y
(χ) · Ŝ

T

z

(
h,

z




)
, (2.57)

where 2
 is the structural period. The parameter h appears in Eq. (2.57) to indicate
one of the two types of structural handedness illustrated in Fig. 2.9.

2.4.2 Local homogenization

The nominal model of Sec. 2.3.2 simplifies greatly for dielectric STFs. In effect,
only the upper left quadrants of the constitutive matrixes [C]ref,s,v , the polarizabil-
ity density matrixes [A]s,v , and the depolarization matrixes [D]s,v of Eqs. (2.16)
to (2.18) must be handled. Further simplification of the Bruggeman formalism
comes from assuming that the deposited material as well as the material in the
voids are isotropic dielectric, albeit with ellipsoidal topology.

Therefore, let εs,v be the relative permittivity scalars of the two constituent
materials, while the shape factors for the two types of ellipsoidal inclusions are

Figure 2.8 Thickness of a C section in a C-shaped SNTF.

Figure 2.9 Structural handedness and period of chiral STFs.
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γ
(s,v)
τ,b . The equation to be solved is the dyadic counterpart of Eq. (2.22):

fv A
v
+ (1− fv) A

s
= 0. (2.58)

The polarizability density dyadics

A
s,v
= ε0

(
εs,vI − ε

ref

) · [
I + iωε0 D

s,v
· (

εs,vI − ε
ref

)]−1
(2.59)

require the computation of the depolarization dyadics

D
s,v
= 2

iπωε0

∫ π/2

ϕ=0

∫ π/2

ϑ=0
sin ϑ

× (sin ϑ cosϕ)2unun+[cos ϑ/γ
(s,v)
τ ]2uτ uτ +[sin ϑ sin ϕ/γ

(s,v)
b ]2ubub

(sin ϑ cosϕ)2εa + [cosϑ/γ
(s,v)
τ ]2εb + [sin ϑ sin ϕ/γ

(s,v)
b ]2εc

dϑ dϕ

(2.60)

by an appropriate numerical integration scheme.
The devised model has been used extensively55,56 to study the plane wave re-

sponses of dispersive chiral STFs on axial excitation, studying in particular the
spectrums of various measures of transmission optical activity. The dependencies
of these quantities on the column inclination angle, periodicity, porosity, and two
ellipsoidal shape factors were deduced. After calibration against experimentally
obtained reflectance/transmittance data,57 the nominal model may turn out a pow-
erful design tool and process-control paradigm. It has already been applied to as-
sess the piezoelectric tunability of lasers and filters made of chiral STFs.75,76

2.4.3 Wave propagation

The matrix [P(z, κ, ψ, ω)] of Eq. (2.24) determines the transfer of electromagnetic
field phasors across a STF. This matrix is independent of z for a CTF; i.e.,

[P(κ, ψ, ω)] = ω


0 0 0 µ0
0 0 −µ0 0
0 −ε0 εc(ω) 0 0

ε0 εd(ω) 0 0 0



+ κ
εd(ω)[εa(ω)−εb(ω)]

εa(ω)εb(ω)
sin χ cos χ


cosψ 0 0 0
sin ψ 0 0 0

0 0 0 0
0 0 − sin ψ cos ψ
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+ κ2

ωε0

εd(ω)

εa(ω)εb(ω)


0 0 cosψ sin ψ − cos2 ψ

0 0 sin2 ψ − cosψ sin ψ

0 0 0 0
0 0 0 0



+ κ2

ωµ0


0 0 0 0
0 0 0 0

− cosψ sin ψ cos2 ψ 0 0
− sin2 ψ cosψ sin ψ 0 0

 , (2.61)

where

εd(ω)= εa(ω)εb(ω)

εa(ω) cos2 χ + εb(ω) sin2 χ
(2.62)

is a composite relative permittivity scalar. The corresponding matrix for SNTFs,
given by

[P(z, κ, ψ, ω)]

= ω


0 0 0 µ0
0 0 −µ0 0
0 −ε0 εc(ω) 0 0

ε0 ςd(ω, z) 0 0 0



+ κ
ςd(ω, z)[εa(ω)− εb(ω)]

εa(ω)εb(ω)

sin 2τ (z)

2


cosψ 0 0 0
sin ψ 0 0 0

0 0 0 0
0 0 − sin ψ cosψ



+ κ2

ωε0

ςd(ω, z)

εa(ω)εb(ω)


0 0 cos ψ sin ψ − cos2 ψ

0 0 sin2 ψ − cosψ sin ψ

0 0 0 0
0 0 0 0



+ κ2

ωµ0


0 0 0 0
0 0 0 0

− cos ψ sin ψ cos2 ψ 0 0
− sin2 ψ cosψ sin ψ 0 0

 , (2.63)

is not spatially constant but depends on z instead. The auxiliary function

ςd(ω, z)= εa(ω)εb(ω)

εa(ω) cos2 τ (z)+ εb(ω) sin2 τ (z)
(2.64)

in Eq. (2.63) is analogous to εd(ω). The matrixes of Eqs. (2.61) and (2.63) simplify
either for propagation in morphologically significant planes (i.e., ψ = 0) or along
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the thickness direction (i.e., κ = 0), and the 4× 4 MODE (2.24) then simplifies
into two autonomous 2× 2 MODEs.

Finally, the matrix [P(z, κ, ψ, ω)] for a chiral STF turns out to be as follows:

[P(z, κ, ψ, ω)]

= ω


0 0 0 µ0

0 0 −µ0 0

hε0[εc(ω)− εd (ω)] cos( πz



) sin( πz



) −ε0[εc(ω) cos2( πz



)+ εd (ω) sin2( πz



)] 0 0

ε0[εc(ω) sin2( πz



)+ εd (ω) cos2( πz



)] −hε0[εc(ω)− εd (ω)] cos( πz



) sin( πz



) 0 0



+ κ
εd (ω)[εa(ω)−εb(ω)]

εa(ω)εb(ω)

sin2χ

2


cos( πz



) cos ψ h sin( πz



) cos ψ 0 0

cos( πz



) sinψ h sin( πz



) sinψ 0 0

0 0 h sin( πz



) sinψ −h sin( πz



) cosψ

0 0 − cos( πz



) sinψ cos( πz



) cos ψ



+ κ2

ωε0

εd (ω)

εa(ω)εb(ω)


0 0 cos ψ sin ψ − cos2 ψ

0 0 sin2 ψ − cos ψ sinψ

0 0 0 0

0 0 0 0



+ κ2

ωµ0


0 0 0 0

0 0 0 0

− cos ψ sin ψ cos2 ψ 0 0

− sin2 ψ cos ψ sin ψ 0 0

 . (2.65)

2.5 Applications

Although optical, electronic, acoustic, thermal, chemical, and biological applica-
tions of STFs were forecast early on,2 the potential of these nanostructured mate-
rials has been most successfully actualized in linear optics thus far. Several types
of optical filters, sensors, photonic band gap (PBG) materials, and electrically ad-
dressable displays are in various stages of development but are definitely past their
embryonic stages.

2.5.1 Optical filters

Chiral STFs display the circular Bragg phenomenon in accordance with their pe-
riodic nonhomogeneity along the z axis.62 Briefly, a structurally right/left-handed
chiral STF only a few periods thick almost completely reflects normally incident
RCP/LCP plane waves with wavelength lying in the so-called Bragg regime; while
the reflection of normally incident LCP/RCP plane waves in the same regime is
very little. Figure 2.10 presents the measured and the predicted transmittances of
a structurally left-handed chiral STF made of titanium oxide, showing the almost
complete blockage of an incident LCP plane wave and the high transmission of an
incident RCP plane wave at free-space wavelengths in the neighborhood of 620 nm.
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Figure 2.10 Measured and predicted transmittance spectrums of a structurally left-handed
chiral STF for normal incidence (κ = 0). The transmittance TLR is the intensity of the LCP
component of the transmitted plane wave relative to the intensity of the RCP component of
the incident plane wave, etc. Dispersion (i.e., frequency-dependence of constitutive para-
meters) was not taken into account when predicting the transmittances from the solution of
Eq. (2.24). (Adapted from Wu et al.78)

The bandwidth of the Bragg regime and the peak reflectance therein first in-
crease with the thickness of the chiral STF, and then saturate. Once this saturation
has occurred, further thickening of the film has negligible effects on the reflection
spectrum. The Bragg regime is also marked by high levels of optical activity,13,30,38

which, however, does not scale with the film thickness and is also highly dependent
on the orientation of the incident electric field phasor.77

More than one Bragg regime is possible when a plane wave is obliquely inci-
dent (i.e., κ 	= 0),62 but it is the normal-incidence case that appears to be of the
greatest value in the context of planar technology. The major successes reported
are as follows:

• Circular polarization filters. The circular Bragg phenomenon can be em-
ployed to realize circular polarization filters. A normally incident, circularly
polarized plane wave of one handedness can be reflected almost completely,
while that of the other handedness is substantially transmitted, if absorption
is small enough and the film is sufficiently thick, in the Bragg regime. This
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has been experimentally demonstrated.78 As of now, the Bragg regime can be
positioned at virtually any free-space wavelength between 450 and 1700 nm.

Calculations show that polarization–insensitivity, for application in laser
mirrors, can be realized with a cascade of two otherwise identical chiral STFs
but of opposite structural handedness.79,80 Furthermore, stepwise chirping
can widen the bandwidth,81 and tightly interlaced chiral STFs may be at-
tractive for bandwidth engineering.82 Finally, dispersive characteristics can
allow more than one Bragg regime,83 as exemplified by the calculated re-
flectance spectrums shown in Fig. 2.11.

A handedness inverter for light of only one of the two circular polariza-
tion states was designed84 and then fabricated as well as tested.85 As the first
reported two-section STF device, it comprises a chiral STF and a CTF func-
tioning as a half waveplate. Basically, it almost completely reflects, say, LCP
light, while it substantially transmits incident RCP light after transforming it
into LCP light, in the Bragg regime.
• Spectral hole filters. A two-section STF was proposed as a spectral hole

filter.86 Both sections are chiral STFs of the same structural handedness and
identical thickness L. Their structural periods 2
1 and 2
2 are chosen such
that 2L(
−1

2 −
−1
1 )= 1. A narrow transmission band then appears for cir-

cular polarized plane waves of the same handedness as the two chiral STF
sections.

A more robust three-section STF was also proposed as a spectral reflec-
tion hole filter. Its first and third sections are identical chiral STFs, whereas

Figure 2.11 Calculated reflectance spectrums of a structurally right-handed chiral
STF half-space for normal incidence (κ = 0). Dispersion is responsible for the circu-
lar-polarization-sensitive Bragg regimes centered at 147 and 349 nm wavelengths. (Adapted
from Wang et al.83)
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the thin middle section is a homogeneous layer which acts like a phase de-
fect.87,88 This design was implemented to obtain a 11-nm-wide spectral hole
centered at a free-space wavelength of 580 nm in the reflectance spectrum.89

An even better design became available shortly thereafter, wherein the
middle layer was eliminated, but the lower chiral STF was twisted by
90 deg with respect to the upper chiral STF about the z axis. The twist per-
formed satisfactorily as the required phase defect.41 With much thicker chiral
STFs on either side of the phase defect, calculations show that ultranarrow
spectral holes (�0.1 nm bandwidth) can be obtained in the transmittance
spectrum;49,90 but their performance could be impaired by attenuation within
the thick sections.

Most recently, slanted chiral STFs have been introduced48 to couple the circular
Bragg phenomenon to the Rayleigh-Wood anomalies exhibited by surface-relief
gratings.91 This coupling occurs when the helicoidal axis is inclined with respect
to the z axis, and suggests the use of these new types of STFs as narrowband
circular polarization beamsplitters.

SNTFs can also be pressed into service as optical filters—for linearly polarized
plane waves. Rugate filters have been realized as piecewise uniform SNTFs to
function as narrow-band reflectors.14 S̆olc filters of the fan and the folded types are
also possible with the same technology.25,92 The major issue for further research
and development is the control of mass density and, hence, ε

ref
(ω) with χv when

fabricating continuously nonhomogeneous SNTFs.
The future of multisection STF devices in optics appears bright because of the

recent feat of Suzuki and Taga42 in being able to deposit a cascade of six different
sections of combined thickness ∼2 µm.

2.5.2 Optical fluid sensors

The porosity of STFs makes them attractive for fluid-concentration-sensing
applications,93,94 because their optical response properties must change in accor-
dance with the number density of infiltrant molecules. In particular, theoretical
research has shown that the Bragg regime of a chiral STF must shift accordingly,
thereby providing a measure of the fluid concentration.93 Qualitative support for
this finding is provided by experiments on wet and dry chiral STFs.95

Furthermore, STF spectral hole filters can function as highly sensitive fluid
concentration sensors. Proof-of-concept experiments with both circularly polarized
and unpolarized incident light have confirmed the redshift of spectral holes on
exposure to moisture.96

2.5.3 Chiral PBG materials

Chiral STFs have been grown on regular lattices by lithographically patterning the
substrates.39,97 Whereas slow substrate rotation results in the growth of arrays of
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nano- and micro-helixes spaced as close as 20 nm from their nearest neighbors,
faster rotation yields arrays of increasingly denser pillars.19 Such STFs are essen-
tially PBG materials in the visible and the infrared regimes,98,99 and the possibility
of fabricating them on cheap polymeric substrates is very attractive.100

2.5.4 Displays

Liquid crystals (LCs) can be electrically addressed and are therefore widely used
now for displays.101,102 Although STFs are not electronically addressable, the
alignment of nematic LCs forced into the void regions of chiral STFs has been
shown to respond to applied voltages.103 Thus, STF-LC composite materials may
have a future as robust displays.

Another interesting possibility, in the same vein, is to grow carbon (and other)
nanotubes by chemical reactions involving fluid catalysts and precursors104 inside
highly porous STFs. The growing nanotubes would have to conform to the struc-
ture imposed by the STF skeleton, and the nanotube-STF composite material thus
formed could be useful for field emission devices.

2.5.5 Optical interconnects

STF technology is compatible with the planar technology of electronic chips. Chi-
ral STFs have the potential to simultaneously guide waves with different phase
velocities in different directions105,106 and could therefore function as optical in-
terconnects, leading to efficient use of the available real estate in electronic chips.
Furthermore, the helicoidal structure of chiral STFs would resist vertical cleavage
and fracture. Simultaneous microrefrigeration enabled by the porous STFs would
be a bonus.

2.5.6 Optical pulse shapers

The current explosive growth of digital optics communication has provided impe-
tus for time-domain research on novel materials. As chiral STFs are very attractive
for optical applications, the circular Bragg phenomenon is being studied in the
time domain. A pulse-bleeding phenomenon has been identified as the underlying
mechanism, which can drastically affect the shapes, amplitudes, and spectral com-
ponents of femtosecond pulses.107 However, narrow-band rectangular pulses can
pass through without significant loss of information.108 The application of STFs to
shape optical pulses appears to be waiting in the wings.

2.5.7 Biochips

Endowed with porosity of nanoengineered texture, STFs can function as microre-
actors for luminescence-producing reactions involving biochemicals. Biolumines-
cent emission is bound to be affected by the reactor characteristics. If the reactor is
a chiral STF, its helicoidal periodicity can be exploited. The structural handedness
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as well as the periodicity of chiral STFs have been theoretically shown to critically
control the emission spectrum and intensity, while the polarization state of the
emitted light is strongly correlated with the structural handedness of the embedded
source filaments.109 Optimization with respect to χv appears possible.110,111

2.5.8 Other applications

From their inception,2 STFs were expected to have a wide range of applications,
implementable after their properties came to be better understood. Their opti-
cal applications came to be investigated first. However, their high porosity—in
combination with optical anisotropy and possible 2D electron confinement in the
nanostructure—makes STFs potential candidates also as

1. electroluminescent devices;
2. high-speed, high-efficiency electrochromic films;
3. optically transparent conducting films sculptured from pure metals; and
4. multistate electronic switches based on filamentary conduction.

That same porosity can be harnessed in microreactors and thermal barriers, as it
is accompanied by high surface area.112–114 For the same reason, STFs may be
useful as nanosieves and microsieves for the entrapment of viruses or for growing
biological tissues on surfaces of diverse provenances. The potential of STFs as
biosubstrates is bolstered by many reports on altered adsorption of proteins and
cells on nanopatterned surfaces.115,116

These applications of STFs are still in their incipient stages, but some advances
have been made on the following two fronts:

• Interlayer dielectrics. With the microelectronics industry moving relent-
lessly toward decreasing feature sizes and increasingly stringent tolerance
levels, an urgent need exists for the use of low-permittivity materials as inter-
layer dielectrics. Silicon dioxide, the current material of choice, has too high
a quasi-static permittivity. The porosity of STFs and nanoporous silica makes
them attractive low-permittivity materials for microelectronic and electronic
packaging applications.72 However, chiral STFs are likely to have signifi-
cant thermal, mechanical, as well as electrical advantages over nanoporous
silica—because of (1) porosity with controllable texture and (2) helicoidal
morphology. Also, STFs can be impregnated with various kinds of polymers.
• Ultrasonic applications. The sciences of electromagnetics and elastodynam-

ics have an underlying mathematical unity. For that reason, many optical
applications described thus far possess ultrasonic analogs. Indeed, ultrasonic
wave propagation in chiral STFs is now theoretically well established,117–119

as also is the potential for its applications.120,121 Actual implementation
would, however, require122 the fabrication of chiral STFs with periods
∼20 µm, of which development is still awaited.
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2.6 Directions for future research

Several of the emerging applications mentioned in Sec. 2.5 are barely past con-
ceptualization. Considerable research on them is warranted, before they become
commercially viable. Just a few of the optical applications have crossed the thresh-
old of academic research and now require several issues to be addressed.

A key issue is that of environmental stability of STFs. The chemical stability of
STFs has not yet been examined in any detail, although the susceptibility of porous
thin films to moisture is known.95 An indentation experiment on a chiral STF123

as well as the successful deposition of six-section STFs42 strongly indicate that
mechanical stability must be investigated in depth. However, only a preliminary
model for the mechanical loading of STFs exists at this time.124,125 Due to the
porosity, internal stresses, and morphological stability of STFs in the absence of
external loads have to be examined carefully as well.126,127

Another key issue is that of efficiency. The vapor incidence angle χv , the
bulk constitutive properties of the deposited material (responsible, e.g., for εa ,
εb, and εc) and the substrate rotation parameters appearing in S(z) must be op-
timized to achieve desired performance characteristics. As examples, the photoca-
talytic efficiency of chiral STFs of tantalum oxide is known to be optimal when114

χv = 20 deg, efficient bioluminiscent emission has been shown110 to require
χv � 15 deg, while χv could be manipulated to maximize the bandwidth of a
Bragg regime.111 A study on second-harmonic generation in uniaxial chiral STFs
has underscored the criticality of χ (and therefore of χv) for efficiency.128 Cross-
polarized remittances are drastically reduced and the diversity in the copolarized
remittances is enhanced by the incorporation of index-matched layers at the en-
try and the exit pupils of circular polarization filters.78 Further improvements may
require the simultaneous deposition of different types of materials to reduce ab-
sorption and dispersion in desired wavelength regimes in optical filters based on
the STF concept.

Nonlinear optics with STFs is practically uncharted territory, despite two re-
ported forays into second-harmonic generation.128,129 Due to the numerous classes
of nonlinearity,130 the delineation of nanocrystallinity in STFs will be of primary
importance. Likewise, understanding of nanodomains in magnetic STFs, as well as
of magnetoelectric effects in bianisotropic STFs, are topics of future research.

Although the demonstrated successes of the STF concept and technology are
few as yet, the electromagnetic and elastodynamic frameworks for STFs are rea-
sonably mature. But for STF research and use to be truly widespread, economical
production must be enabled. Any satisfactory production technique must be rapid
and deliver high yields, so that large-scale fabrication must become possible. The
latter appears feasible with the adaptation of ion-thruster technology.131 Further-
more, the films will have to be laterally uniform with growth evolution, and χ

may have to be lower than 20 deg. If PVD (or any variant) is to be industrially
successful, then new architectures for the evaporant flux source—whether discrete
or continuous, single, or multiple—must be developed to deposit STFs on large
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substrates. Reliability of deposition uniformity would be facilitated by computer-
controlled source architectures. In turn, they will require the development of in
situ monitoring of the deposition process and appropriate control models. These
and related avenues for manufacturing research must be opened up. Some progress
has been recently made.132
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0 null dyadic
[0] null matrix
aL,R circular amplitudes of incident plane wave
as,p linear amplitudes of incident plane wave
A

s,v
polarizability density dyadics

[A]s,v 6× 6 polarizability density matrixes
B primitive magnetic field phasor
[C]ref,s,v 6× 6 constitutive matrixes
D induction electric field phasor
D

s,v
depolarization dyadics

[D]s,v 6× 6 depolarization matrixes
ex,y,z Cartesian components of e
e, E primitive electric field phasor
fv void volume fraction, porosity
[f] column vector of size 4
h structural handedness parameter
hx,y,z Cartesian components of h
h, H induction magnetic field phasor
i =√−1
I identity dyadic
[I] identity matrix
k0 free-space wave number
L film thickness
[M] 4× 4 matrizant
p± plane-wave polarization vectors
[P] 4× 4 matrix function
r position vector
rL,R circular amplitudes of reflected plane wave
rLL,LR,RL,RR circular reflection coefficients
rs,p linear amplitudes of reflected plane wave
rss,sp,ps,pp linear reflection coefficients
RLL,LR,RL,RR circular reflectances
Rss,sp,ps,pp linear reflectances
s plane-wave polarization vector
S rotation dyadic
S

x,y,z
elementary rotation dyadics

Ŝ
y,z

rotation dyadics

t time
tL,R circular amplitudes of transmitted plane wave
tLL,LR,RL,RR circular transmission coefficients
ts,p linear amplitudes of transmitted plane wave
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tss,sp,ps,pp linear transmission coefficients
TLL,LR,RL,RR circular transmittances
Tss,sp,ps,pp linear transmittances
ux,y,z Cartesian unit vectors
uτ,n,b tangential, normal and binormal unit vectors
U

s,v
ellipsoidal shape dyadics

x, y, z Cartesian coordinates
α

ref
reference relative magnetoelectricity dyadic

α
r

relative magnetoelectricity dyadic
α

s
relative magnetoelectricity dyadic of deposited material

α
v

relative magnetoelectricity dyadic in the void region
[α]ref,s,v 3× 3 matrix equivalents of α

ref,s,v

β
ref

reference relative magnetoelectricity dyadic

β
r

relative magnetoelectricity dyadic

β
s

relative magnetoelectricity dyadic of deposited material

β
v

relative magnetoelectricity dyadic in the void region

[β]ref,s,v 3× 3 matrix equivalents of β
ref,s,v

γ
(s,v)
τ,b ellipsoidal shape factors

δs,v ellipsoidal size measures
ε0 permittivity of free space
εa,b,c relative permittivity scalars
εd composite relative permittivity scalar
ε

r
relative permittivity dyadic

ε
ref

reference relative permittivity dyadic
εo

ref
auxiliary relative permittivity dyadic

ε
s

relative permittivity dyadic of deposited material
ε

v
relative permittivity dyadic in the void region

[ε]ref,s,v 3× 3 matrix equivalents of ε
ref,s,v

ζ angular function
η0 intrinsic impedance of free space
ϑ angle
θ angle of incidence with respect to z axis
κ transverse wave number
µ0 permeability of free space
µ

r
relative permeability dyadic

µ
ref

reference relative permeability dyadic

µ
s

relative permittivity dyadic of deposited material

µ
v

relative permittivity dyadic in the void region

[µ]ref,s,v 3× 3 matrix equivalents of µ
ref,s,v
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ξ(z) angular function
ϕ angle
σ dummy variable
ςd composite relative permittivity function
τ angular function
χ column inclination angle
χv vapor incidence angle
ψ angle of incidence in xy plane
ω angular frequency

 structural period of C-shaped SNTF and structural half-period

of chiral STF
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3.1 Introduction

Nanotechnology is a scientific frontier with enormous possibilities. Reducing the
size of objects to nanometer scale to physically manipulate the electronic or struc-
tural properties offers a fabrication challenge with a large payoff. Nanophotonics is
a subfield of nanotechnology and a part of nanophotonics includes photonic band
gap structures, which manipulate the properties of light to enable new applications
by periodically modulating the relative permittivity. In photonic band gap (PBG)
structures, the electromagnetic properties of materials, such as the electromagnetic
density of states, phase, group velocities, signal velocities, field confinement, and
field polarization are precisely controlled. The size scale of interest in PBG struc-
tures is typically of the order of a wavelength, which is not quite as demanding
as required to observe quantum confinement effects in electronic materials. Nev-
ertheless, photonic devices designed with nanophotonic technology enable new
technology for devices and applications in sensing, characterization, and fabrica-
tion.

Even though PBG photonic devices are complex and the fabrication is often
expensive, rapid progress on PBG structures has been possible because of the de-
velopment of powerful numerical computation tools that provide a detailed analysis
of the electromagnetic properties of the system prior to fabrication. To design pho-
tonic devices we use a variety of computational techniques that help in evaluating
performance.

Several books have already been written about the optical properties of PBGs.
A classic book on 1D periodic structures was written by Brillouin.1 Yariv and Yeh’s
book is an excellent resource on many aspects of periodic optical media.2 Recent
books devoted to the subject include the books by Joannopoulos et al.,3 the very
thorough book by Sakoda,4 and a recent book on nonlinear optics of PBGs by
Slusher and Eggleton5 that features results of several researchers who have con-
tributed to the subject. In addition, many good articles on PBG structures can be
found in special issues6–8 or in summer school proceedings.9,10

Numerical approaches are available to completely describe the properties of
electromagnetic wave propagation in PBG structures. Three methods are of general
use; they are the plane wave, the transfer matrix, and the finite-difference time-
domain (FDTD) methods. The results of the plane wave method with the latter two
are to some degree complementary, as is demonstrated and discussed later in this
chapter.

Analytical methods are also available and have been especially useful for 1D
systems. For instance, the development of coupled-mode equations for propaga-
tion by using multiple scales or slowly varying amplitude methods has given re-
searchers powerful tools for studying nonlinear effects and designing new electro-
optic (EO) devices, such as tunable optical sources from the ultraviolet to the tera-
hertz regime, EO modulators, and a new generation of sensitive bio/chem sensors.

In this chapter, several basic algorithms are introduced and results exemplify-
ing each numerical method are presented. MATLAB programs for the 1D transfer
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matrix method and the 2D plane wave method are provided in the appendixes. They
are the simplest to understand and implement, and do not demand a large compu-
tational effort. The reader can use these programs to explore the band structure or
transmission and reflection characteristics.

Periodic structures form a special subset in the subject of inhomogeneous me-
dia. Rayleigh published early studies of optical properties of inhomogeneous me-
dia devoted to the long-wavelength regime where the effective relative permittivity
was calculated using various analytical approximations. For periodic structures,
accurate calculations of the relative permittivity tensor are possible by the plane
wave method by using the asymptotic form of the dispersion relation for long
wavelengths.11 These properties also have potentially new applications.

In the following sections, the conceptual foundations of PBG structures are
elucidated. Section 3.2 provides a brief description of 1D systems. Basic optical
properties are introduced, such as the electromagnetic density of modes, group
velocity dispersion, band-edge field enhancement and nonlinear optical response
characteristics.

Section 3.3 is devoted to higher-dimensional PBG systems. The common nu-
merical techniques used to explore the optical properties of these systems are pre-
sented and results illustrating the techniques are provided. The final section sum-
marizes the theoretical points of the previous sections and provides some future
research directions. Two appendixes are provided with MATLAB programs that
the reader can apply to illustrate some of the concepts and explore different para-
meter regimes.

3.2 One-dimensional structures

A multilayered dielectric stack is the simplest material that has some properties that
are identified with PBG structures. The general properties of periodic structures
can be found in the books by Brillouin1 and Yariv and Yeh.2 Multilayer PBGs
exhibit interesting phenomena, such as high reflectivity over a frequency range,
a so-called forbidden band or stop band. The theory has a strong correspondence
with the quantum theory of periodic lattice.

3.2.1 Finite periodic structures: arbitrary angles of incidence

An optical filter consists of a large number of thin layers of differing optical prop-
erties. In any one layer, relative permittivity ε(t) has dispersive characteristics, but
is independent of position. The temporal Fourier transform of the permittivity is
frequency dependent, i.e., ε̃(ω). The relative permeability µ(t) may also be disper-
sive. Although magnetic systems are rare in practice, they have become the center
of attention in recent years due to the special properties of microscopically inho-
mogeneous systems that can have both negative real parts of ε̃(ω) and µ̃(ω). Such
systems are called “left-handed” materials and one special interfacial property is
the bending of the phase front of light at an angle on the opposite side to the normal
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refraction angle. For zero electric current and vanishing charge density, Maxwell’s
equations are stated as follows:

∂D
∂t
=∇ ×H,

∂B
∂t
=−∇ × E, ∇ ·B=∇ ·D= 0. (3.1)

The constitutive relations for a homogeneous, isotropic, dielectric-magnetic
medium are given as

B(t)=µ0

∫ ∞
−∞

µ(t − t ′)H(t ′) dt ′, D(t)= ε0

∫ ∞
−∞

ε(t − t ′)E(t ′) dt ′, (3.2)

which must be consistent with the Kramers-Kronig relations.12,13 For nonmagnetic
materials [i.e., µ̃(ω)= 1], the foregoing equations can be reformulated to give the
vector wave equation

∂2D
∂t2
= c2∇2E, (3.3)

where the speed of light in vacuum is c = (ε0µ0)−1/2. In the remainder of this
chapter, ε̃(ω) and µ̃(ω) are written simply as ε and µ, with their functional depen-
dences on the angular frequency ω being implicit.

For an electromagnetic field associated with a light ray traveling in the xz plane
and making an angle α (also called the angle of incidence) with the z axis, E is a
sinusoidal plane wave,

E= Re
[
Ẽeik(ct−z cos α−x sin α)

]
, (3.4)

where k is the wave number and (sin α, 0, cosα) is the unit vector in the direction
of propagation. In the rest of this section, the permittivities are frequency-domain
functions. The tilde is dropped from the notation.

Two linear polarizations are distinguished in the analysis for boundary value
problems. The p-polarized wave has its electric field vector in the plane of inci-
dence, i.e., the plane defined by the incident, reflected and transmitted wave vec-
tors, and the s-polarization has its electric field vector confined perpendicular to the
plane of incidence. The two polarizations are indistinguishable at normal incidence
(α = 0). Thus, for

• s-polarization: E is in the y direction, so Ẽ= (0, A, 0) and, correspondingly,
B̃= (A/c)(− cosα, 0, sin α) {B= Re[B̃eik(ct−z cos α−x sin α)]}.

• p-polarization: E lies in the x-z plane so Ẽ= A(cosα, 0,− sinα) and B̃=
(A/c)(0, 1, 0).

In either case, A is the complex amplitude of the electric field and contains infor-
mation about the phase as well as the magnitude.
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At a single interface, say z= 0 for the present, between two media with relative
permittivities εa and εb and relative permeabilities µa and µb lying in z < 0 and
z > 0 respectively, an incoming wave

ẼI eika(ct−z cos α−x sin α) (3.5)

in z < 0 undergoes reflection and refraction so there are both a reflected plane wave

ẼReika(ct−z cos γ−x sin γ ), z < 0, (3.6)

and a transmitted one

ẼT eikb(ct−z cos β−x sin β), z > 0, (3.7)

where γ = π − α, ka =√µaεaω/c, and kb =√µbεbω/c.
At the interface, the tangential components of E and of H and the normal com-

ponents of B and D are continuous. Application of the boundary conditions to the
total field for z < 0 and the transmitted field in z > 0 gives the so-called Snell’s
law

sin β

sin α
=

√
εaµa

εbµb

(3.8)

for both polarizations, and the following polarization-specific relationships:

• s-polarization:

AR

AI

=
√

εa/µa cos α−√εb/µb cosβ√
εa/µa cos α+√εb/µb cosβ

, (3.9)

AT

AI

= 2
√

εa/µa cos α√
εa/µa cos α+√εb/µb cosβ

; (3.10)

• p-polarization:

AR

AI

=
√

µa/εa cos α−√µb/εb cosβ√
µa/εa cos α+√µb/εb cosβ

, (3.11)

AT

AI

= 2
√

µb/εb cosα√
µa/εa cos α+√µb/εb cosβ

. (3.12)

A PBG structure is a multilayer extension of the preceding results. The process
of reflection and refraction repeatedly occurs at each internal boundary, which gen-
erates a pair of internal forward- and backward-propagating plane wave fields in
each layer whose amplitudes are uniquely determined from the boundary condi-
tions. Because z 	= 0 at the interfaces, some care must be exercised with phases.
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The transmission and reflection relations are used to determine equations for
the complex amplitudes of the waves in the positive and negative z directions
in layer m (Am and Cm, respectively). At the boundary z = zm between layers
m− 1 and m (m = 1, . . . , M , with z < z1 being the exterior of the filter), using
s-polarization:

Cm−1eikmzm cosαm−1 =
√

εm−1/µm−1 cosαm−1 −√εm/µm cos αm√
εm−1/µm−1 cosαm−1 +√εm/µm cos αm

Am−1

× e−ikmzm cosαm−1

+ 2
√

εm/µm cosαm√
εm−1/µm−1 cos αm−1 +√εm/µm cosαm

Cm

× eikmzm cosαm (3.13)

[see Eqs. (3.9) and (3.10)]; and

Ame−ikmzm cosαm = 2
√

εm−1/µm−1 cosαm−1√
εm−1/µm−1 cosαm−1 +√εm/µm cosαm

Am−1

× e−ikmzm cosαm−1

+
√

εm/µm cosαm −√εm−1/µm−1 cosαm−1√
εm−1/µm−1 cosαm−1 +√εm/µm cos αm

Cm

× eikmzm cosαm. (3.14)

The extra terms on the right sides are due to the incoming wave moving down
from z > zm. The factors eikmzm cosαm−1 etc. account for the nonzero value of z at
the interface z= zm.

There are now 2M equations for A1, . . . , AM , C0, . . . , CM−1, given A0, the in-
coming wave, and assuming that CM = 0, i.e., that no light is returned from the fil-
ter (or CM is otherwise specified). The other polarization can be similarly handled.
(It is clear that, because of the different transmission and reflection coefficients for
the two polarizations when α 	= 0, light not arriving normally complicates matters.)

The foregoing amplitude equations are solved by matrix methods, which we
will refer to as the transfer matrix method. The MATLAB program in Appendix A
implements the 1D transfer matrix method; it was used to illustrate several results
presented in this chapter. A compact interference filter can be designed using the
transfer matrix program. Most parameters are annotated in the main program. An
interpolation function is used for dispersive dielectric properties, but this feature
will not be demonstrated here. The program has been tested using metal layers, an
extreme case, where the imaginary part of the refractive index exceeds the real part
in magnitude.

Two figures are generated from the transfer matrix program in Appendix A.
For simplicity, the layers are a quarter-wavelength thick at the free-space (vacuum)
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wavelength λ0 = 2πc/ω= 1.5 µm. The refractive indices of the materials in one
layer pair are n1 =√εa = 3.5 and n2 =√εb = 1.5, both materials being nonmag-
netic (i.e., µa =µb = 1); the first is typical of a semiconductor material, while the
second is typical of a wide electronic band gap insulator. No attempt was made to
put in specific material parameters in the program, which has the capacity to apply
complex index parameters and to interpolate from a table of data. The superstrate
and substrate materials are assumed to have the same electromagnetic properties
as vacuum. Five periods of the two layers are sufficient to create a large transmis-
sion stop band that covers wavelengths ranging from 1.1 to about 2 µm. This filter,
which is less than 2 µm thick, is very compact indeed.

The larger issue in designing an interference filter is the dependence of the
transmission on the angle of incidence of the radiation. Large variations may foil
the rejection wavelength range for the filter. In Fig. 3.1, the p-polarization trans-
mission function is shown for two angles of incidence α = 0 and π/4. The edges
of the stop bands shift by about 10% over this range. For larger angles, the shift
becomes even larger. The s-polarization displayed in Fig. 3.2 has a similar angu-
lar dependence with a 10% shift of the band edge near 1.1 µm. Both have a larger
shift of the gap to a wavelength near 500 nm. Evaluation of the angular dependence
highlights a problem for the operation of the interference filters.

3.2.2 Brief summary of infinite periodic structures

Consider the simplest form of an infinite periodic dielectric structure whose index
is defined by a periodic step function, where the steps have index values of n1 and
n2 for widths a and b, respectively, with d = a + b being the period of the lattice,
and m= 0, 1, 2, . . . , being the translation factor (Fig. 3.3). The permittivity and the
permeability are related to the indices.

Figure 3.1 A p-polarization transmission for α = 0 and π/4. Parameters are given in the
text. The free-space (vacuum) wavelength λ0 = 2πc/ω is the independent variable.

Downloaded from SPIE Digital Library on 18 Jun 2012 to 58.97.130.72. Terms of Use:  http://spiedl.org/terms



52 Joseph W. Haus

Figure 3.2 Same as Fig. 3.1, but for s-polarization.

Figure 3.3 A section of an infinitely layered periodic structure.

The electromagnetic plane waves are assumed to propagate perpendicular to
the layers. The electric field, which is perpendicular to the propagation direction,
satisfies the scalar wave equation for a plane wave with frequency ω propagating
in the z direction; thus,

d

dz

1

µ(z)

dA

dz
+

(
ω

c

)2

ε(z)A= 0. (3.15)

This second-order ordinary differential equation has two independent solutions,
which we denote as A1(z) and A2(z). The Wronskian, defined as the determinant
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of the solutions and their first derivative,

W(z)=
∣∣∣∣A1(z) A2(z)

A′1(z) A′2(z)

∣∣∣∣ , (3.16)

is nonzero when the solutions are independent. Moreover, if n1 and n2 are kept
constant within each unit cell, the Wronskian is also a constant—i.e., the value of
the Wronskian is equal in the layers with identical physical properties. The solu-
tions translated by a lattice constant can be written as a linear combination of the
original solutions [

A1(z+ d)

A2(z+ d)

]
=M

[
A1(z)

A2(z)

]
, (3.17)

where M is the 2× 2 transfer matrix. The Wronskian of the translated solutions
is identical, i.e., W(z + d) = W(z). From the constancy of the Wronskian, we
conclude that the determinant of M must be equal to unity, i.e.,

M11M22−M12M21 = 1. (3.18)

Note that M has eigenvalues λ of the form

λ± = e±ikd , (3.19)

where k is the wave number. Thus, we have

A�(z+ d)= eikdA�(z), �= 1, 2, (3.20)

which is a manifestation of the Floquet–Bloch theorem. The amplitudes of the
functions A�(z) called Floquet–Bloch functions are strictly periodic in z. The gen-
eral solution in each region can be written as

A1 = C1eik1z +D1e−ik1z,

A2 = C2eik2(z−a)+D2e−ik2(z−a). (3.21)

The solution A1 is valid in the region z ∈ (0, a) and all other regions displaced from
this by md , where (m= 1, 2, . . .), and the wave number is related to the frequency
by

k1 = n1
ω

c
=√ε1µ1

ω

c
. (3.22)

The solution A2 is valid in the region z ∈ (a, d) and all its translations by md , and
the wave number for this region is similarly defined as

k2 = n2
ω

c
=√ε2µ2

ω

c
. (3.23)
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The wave number k in Eq. (3.20) is normally restricted to the first Brillouin zone,
since values outside this zone are redundant. To solve the eigenvalue problem and
determine the connection (i.e., dispersion relation) between the wave number k and
the frequency ω, the boundary conditions must be applied.

The two matrix coefficients M11 and M22 are

M11 =M∗22 =
(1+Z12)2

4Z12
ei(k1a+k2b)− (Z12 − 1)2

4Z12
ei(k2b−k1a), (3.24)

where Z12 = n1/n2 is the impedance ratio and the asterisk denotes complex con-
jugation. The dispersion equation is

cos(kd)= (1+Z12)2

4Z12
cos(k1a + k2b)− (Z12 − 1)2

4Z12
cos(k2b− k1a). (3.25)

By plotting this transcendental equation, we deduce that the band structure of the
1D lattice always possesses a stop band, no matter how close Z12 is to unity. Fig-
ure 3.4 displays a strong distortion of the dispersion equation from a straight line.
This is an example of the strong dispersion introduced by a PBG.

3.2.2.1 Electromagnetic mode density

The electromagnetic mode density is the number of electromagnetic modes per
unit frequency range. The density of modes (DOM) is given by14

ρ(ω)=
∫ π/d

0
δ[ω−ω(k)]dk, (3.26)

Figure 3.4 Dispersion curve for an infinite 1D lattice. The parameters are n1 = 2, n2 = 1,
a = 1/6, and b = 1/4. The edge of the first Brillouin zone is kd = π in the plotted units. The
band gaps occur where k is complex-valued, signaling thereby that the wave is no longer
propagating.
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where the Dirac delta function δ(·) is used as a sifting function. The DOM is given
by

ρ = 1

vg

= 1

|dω/dk|, (3.27)

where vg is the group velocity of the wave.
The DOM of a periodic structure is normalized with respect to the DOM of

a homogeneous medium of the same length and same average refractive index.
The wave number in a homogeneous medium of refractive index nhomo is k =
nhomoω/c. Thus the DOM ρhomo in such a medium is

ρhomo = nhomo

c
. (3.28)

The normalized DOM for a periodic structure is then given by

ρnorm
homo =

ρ

ρhomo
= nhomo

|dω/dk|c . (3.29)

The DOM in one dimension diverges at the band edge, as the group velocity van-
ishes for an infinite lattice.

3.2.3 Finite periodic structures: perpendicular incidence

In analyzing a finite periodic structure, the effect of the finite boundaries on the
internal field structure is considered. We begin with the simplest case of a unit cell
composed of two layers with refractive indices n1 and n2 and widths a and b as
before, with a + b = d .

After normalizing the input field at z= 0 to unity, and defining r1 and t1 as the
complex reflectance and transmittance for the unit cell, the solutions to the field in
column vector form at the boundaries are

A(0)=
(

1
r1

)
, A(d)=

(
t1
0

)
. (3.30)

In this case, the 2× 2 transfer matrix15 is defined as

A(0)=MA(d). (3.31)

Using the boundary conditions at z= a, and the fact that for real-valued refractive
index profiles, the behavior of the field must be invariant under time reversal, yields

M=
(

1/t1 r∗1 /t∗1
r1/t1 1/t∗1

)
. (3.32)
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The eigenvalue equation of M, with eigenvalues λ, is therefore

λ2− 2λRe(1/t1)+ 1= 0, (3.33)

where Re(·) denotes the real part. Rewriting λ in a convenient form as λ= eiθ0 , we
obtain the useful relation

Re(1/t1)= cosθ0. (3.34)

The Cayley–Hamilton theorem states that every matrix obeys its own eigenvalue
equation; hence,

M2 − 2M cosθ0 + I= 0, (3.35)

where I is the 2× 2 identity matrix. It follows by induction that the transfer matrix
for an N -layered structure is

MN =M
sin Nθ0

sin θ0
− I

sin(N − 1)θ0

sin θ0
. (3.36)

The general form of the transfer matrix M shown in Eq. (3.32) for a unit cell can
be applied to N unit cells, as well. Thus,

MN =
(

1/tN r∗N/t∗N
rN /tN 1/t∗N

)
, (3.37)

where rN and tN are the complex reflection and transmission amplitudes for an
N -period PBG. The transmission for an N -period structure is therefore

1

TN

= 1

|tN |2 = 1+ sin2 Nθ0

sin2 θ0

(
1

T1
− 1

)
, (3.38)

where T1 = |t1|2 is the transmittance for a single unit cell. To explicitly calcu-
late T1, the boundary conditions are applied at each interface. Following the same
procedure as for the infinitely layered structure, we can calculate the transfer ma-
trix for the field as it goes from the first layer to the second layer explicitly as

M12 =
[

(1+Z12)e−ik1a (1−Z12)e−ik1a

(1−Z12)eik1a (1+Z12)eik1a

]
. (3.39)

The transfer matrix for the field propagation through the layer pair making up the
unit cell is M=MabMba . Defining T12 and R12 as T12 = (4n1n2)/(n1+ n2)2 and
R12 = 1− T12, the transmission for a single layer denoted as b is

tb = T12ei(p+q)

1−R12e−2iq
, (3.40)
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where p = n1aω/c and q = n2bω/c. The field within an N -layered structure can
be calculated by applying the transfer matrix to the input field at each layer bound-
ary. The phase θ0 in Eq. (3.38) plays a very important role in the behavior of the
transmission curve of a finite period structure. In the passbands, θ0 is real val-
ued and TN varies periodically with θ0. When θ0 is complex-valued, this behavior
changes to a hyperbolic exponential form, giving rise to band gaps. The quantity θ0
is real-valued when |Re(1/t1)| � 1| and complex-valued otherwise, as seen from
Eq. (3.34). For real values of θ0, Eq. (3.38) shows that TN is periodic in θ0 with a
period π/N resulting in N oscillations in each passband interval of θ0-length π .
Reference 15 is a detailed exposition of the properties of TN . For large values of N ,
the transfer matrix method requires several repeated matrix multiplications.

3.2.3.1 Density of modes

A general expression for the DOM for a finite periodic structure was derived us-
ing cavity quantum electrodynamics (QED) in Refs. 15 and 16. For an N -period
structure, the DOM is defined as

ρN = dkN

dω
, (3.41)

and the group velocity as

vN = 1

ρN

= dω

dkN

. (3.42)

Given that the complex-valued transmission amplitude tN is available from the
transfer matrix method, the DOM can be calculated as in Ref. 15, i.e.,

ρN = 1

d

Im(tN )′Re(tN )−Re(tN )′Im(tN )

Re(tN )2 + Im(tN )2
, (3.43)

where the prime indicates differentiation with respect to ω, while Im(·) denotes the
imaginary part. As demonstrated in Fig. 3.5, the DOM mimics the behavior of the
transmission curve. The maxima and minima of the DOM and transmission seem
to line up, but there is a slight offset between the extreme values of the two curves.
This offset becomes rapidly negligible with increasing number of periods N . The
DOM has its largest values at the band edge resonance, which means that the group
velocity is the smallest at the band edge.

3.2.3.2 Effective refractive index

The spatial variation of the refractive index within the periodic structure has a
square wave profile, as inferred from Fig. 3.3. The refractive index neff(ω) for the
structure as a whole, which we shall call the effective refractive index, can be cal-
culated by a simple yet elegant method.16 The effective refractive index neff(ω) is
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Figure 3.5 Transmission T15 and density of states ρ15 versus a scaled angular frequency
for a layered structure comprising 15 two-layer periods with the same thickness for each
dielectric layer. For comparison, ρ∞ (the density of states for an infinite lattice) is also shown.
Refractive indices are n1 = 1 and n2 = 1.25.

a very useful tool in understanding the phase-matching concerns that are essential
for good conversion efficiency in parametric frequency conversion processes.

The transmission amplitude at the output of a periodic structure of length L can
be written as

t̂ (ω)=A(L)eikeff(ω)L, (3.44)

where A is the position-dependent amplitude, and keff is the effective wave number
of the whole structure defined as

keff(ω)= neff(ω)
ω

c
. (3.45)

These two equations yield the expression

neff(ω)= c

ω

1

L
tan−1

[
Im(t̂ )

Re(t̂ )

]
. (3.46)

The actual value of the transmission amplitude t̂ for a given refractive-index profile
can be easily determined using the transfer matrix method.

The behavior of the effective refractive index as a function of frequency for a
dielectric structure with 10 equal two-layer periods (n1 = 1, n2 = 1.5) is seen in
Fig. 3.6. The transmission through this structure is also plotted on the same graph
for comparison. Within the first band gap, the effective refractive index falls sharply
as a function of frequency, while neff varies very slowly with ω outside that regime.

The behavior of neff is analogous to that of a Lorentzian atom under the influ-
ence of a sinusoidally varying electric field. The normal dispersion region for the
Lorentzian atom, associated with an increase in the real part of the refractive index
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with angular frequency, corresponds to the region outside the band gaps in the peri-
odic structure. The anomalous dispersion regions then correspond to the band gaps
in the transmission curve in Fig. 3.6. In the anomalous dispersion region, when
the imaginary part of neff is large, there is a large dissipation of energy into the
medium, i.e. there is resonant absorption in these regions. However, in the case of
the periodic structures, the corresponding band gap regions represent reflection of
the electromagnetic wave from the structure, either partially or completely.

3.2.3.3 Field profiles

The transmitted (forward) and reflected (backward) field amplitudes within the
periodic structures are computed by repeated applications of the transfer matrix
method and by retaining the amplitudes generated in each layer. The fields are
functions of both position z and angular frequency ω.

The field amplitude is largest at the first transmission resonance below the band
gap. The first transmission resonances on either side of the band gap are called the
lower and the upper band edge transmission resonance, respectively. The field am-
plitude at the resonance frequency has one maximum as would be found for the
lowest transmission in a Fabry–Pérot étalon. The difference is that the Fabry–Pérot
resonance is a half wavelength, while for the Bragg grating, the field amplitude
varies slowly over the scale of a wavelength. The maximum field amplitude is
larger than the input field value. For transmission resonances farther from the band
gap edge, the field profiles exhibit an increasing number of maxima, again similar
to higher-order modes in the Fabry–Pérot étalon. The field profile shows two max-
ima at the second transmission resonance, three maxima at the third transmission
resonance, etc. However, note that the field values at the band edge transmission
resonance are the largest. This follows directly from the fact that the DOM has its
largest values at the band edge transmission resonances, as seen in Fig. 3.5. This
selective enhancement of the fundamental field at the band edge is a significant fact

Figure 3.6 Effective refractive index neff and transmission T̂ = |t̂ |2 versus a scaled angular
frequency for a periodic dielectric structure of 10 two-layer periods, with refractive indices
n1 = 1 and n2 = 1.5 and the same thickness for each layer.
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that can be exploited in designing efficient nonlinear optical devices. The behavior
of the fields on the short-wavelength side of the band gap is analogous to that on the
long-wavelength side. The presence of the transmission maxima at the band edge
is also critical to the selective enhancement of the fundamental field. The max-
ima are washed out when the grating is apodized or chirped or when absorption is
present.

3.2.3.4 Absorption

Absorption in a material medium is quantified by the absorption coefficient, which
is defined in terms of the imaginary part of the refractive index. There is a distinc-
tion depending on which material (high or low index) has absorption. To illustrate
the effects of absorption, we consider the case where the high index is complex.
Figure 3.7(a) represents the transmission spectrum about the center of the first
band gap for two cases: lossless dielectrics and dielectrics with equal absorption
in the two media. The transmission is symmetrically lowered around the band gap
region.

In Fig. 3.7(b), the transmission spectra indicate that the absorption is not uni-
formly distributed. The dashed curve represents the spectrum when the complex
refractive index is concentrated in the high-index medium, while the solid curve
represents the case where the lower index medium is absorptive. The transmission
through such a structure can then be calculated following the usual transfer ma-
trix recipe. The introduction of absorption causes a fall in the transmitted intensity,
but more importantly, the asymmetry in the absorption spectrum reveals where the
electric field is concentrated. It is mainly in the high-index medium on the low-
frequency side of the band gap and vice versa on the high-frequency side. The size
of the band gap, however, does not change. In addition to a general drop in the
transmission, a complex index smoothes out the oscillations on each side of the

Figure 3.7 Transmission versus �ω (detuning from the angular frequency at the center of
the band gap) for lossy and nonlossy dielectrics. (a) The solid line is the lossless dielectric
case and the dash-dotted line represents lossy dielectric with equal absorption in each
dielectric. (b) One dielectric is lossy. The lossy medium is the higher permittivity medium for
the dashed line and it is the lower permittivity medium for the solid line.
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band gap. The oscillations become progressively smaller with increasing values
of the absorption. The fundamental field intensity at the band edge also falls as a
result of the absorption and the smoothing out of the transmission resonances. Ab-
sorption limits the ability of the structure to enhance the fundamental field at the
band edge, by smoothing out the transmission resonances.

The transfer matrix method is also used for metal/dielectric layers that have
demonstrated surprizing transmission and reflection propereties when placed
together.17,18

3.2.4 Slowly varying envelope techniques

Scalora and Crenshaw19 developed a generalization of the beam propagation algo-
rithm that has found wide application in nonlinear optics. This method has many
advantages over the other beam propagation methods because it handles forward
and backward propagating waves and is simple to implement. It can be used for
nonlinear media and is useful to describe pulse propagation. This method is a pow-
erful numerical procedure for studies of 1D and 2D photonic band structures.

The method, called the slowly varying envelope approximation in time
(SVEAT), is discussed here for 1D lattices. The wave is incident perpendicular
to the interface and satisfies the scalar wave equation:

∂2E

∂z2
−

(
1

c

)2
∂2E

∂t2
= 4π

c2

∂2P

∂t2
, (3.47)

where P is the polarization of the medium. This can be as simple as an expres-
sion proportional to the electric field or as complicated as a contribution that is a
nonlinear function of the electric field.

The equation is approximated by a slowly varying envelope expansion, but only
the rapid time variable is approximated. Let the field be represented by

E(z, t)= 2Re(Êe−iωt ), (3.48)

where Ê is an envelope function. The polarization is also decomposed into rapid
and slow varying contributions. After expressing the polarization envelope through
a linear susceptibility χ as

P̂ = χÊ, (3.49)

the wave equation is approximated as

∂Ê

∂τ
− iDÊ = i

1+ 4πχ

4π
Ê. (3.50)
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Therein, the spatial variable has been scaled to the wavelength ξ = z/λ0, time has
been scaled by the oscillation frequency to τ = νt , and the operator

D ≡ 1

4π

∂2

∂ξ2 (3.51)

has been used.
The solution of Eq. (3.50) is formally written as

Ê(ξ, τ )= T ei
∫ τ

0 [D+(1/4π)+χ ]dτ Ê(ξ, 0), (3.52)

where T is the time-ordering operator. The differential operator D can be diago-
nalized by Fourier transformation, but the susceptibility χ may be a complicated
function of the field and the spatial and temporal variables. Therefore, this equation
is solved by a spectral method called the split-step propagation algorithm or beam
propagation method. A second-order version of this algorithm is as follows:

Ê(ξ, τ )= eiDτ/2ei
∫ τ

0 [(1/4π)+χ ]dτeiDτ/2Ê(ξ, 0). (3.53)

It is solved by applying the fast Fourier transform technique to diagonalize the
operator D and then solving for the susceptibility in the original space.

This method has been applied to a wide variety of problems, including pulse
reshaping and dispersion in transmission through20 a PBG and emission rates of
dipoles embedded21 in a PBG. Recent work on pulse propagation in nonlinear
metallodielectrics, i.e., stacks containing alternate layers of metals and insulating
dielectrics, has elucidated the optical limiting properties of the complex, nonlinear
systems.22

The method has been generalized to cover forward-backward coupled-mode
equations to describe nonlinear media with space-time effects. Such methods con-
tinue to find uses as we explore new parameter regimes and have led to potential
novel applications of PBGs.

3.2.5 Nonlinear optics in 1D PBGs

One-dimensional PBGs constitute a large portion of the research effort for obvious
reasons. They are often simple to fabricate with good control over layer thickness
and surface smoothness, they are cost-effective, and the experiments are simpler
to design. What is perhaps surprising is the control that can be exercised over the
optical properties of 1D systems to enhance a system’s nonlinear response.

Among the many interesting nonlinear phenomena that are predicted (and of-
ten observed) in 1D PBGs are gap solitons,23 optical limiting and switching,22,24–27

optical parametric generation,28–30 optical diodes,31 photonic band edge lasers,32

Raman gap solitons,33 and superfluorescence.34 To illustrate the usefulness of non-
linear effects in 1D systems, this section concludes with a highlight of two nonlin-
ear effects in PBGs: gap solitons and second-harmonic generation.
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Gap solitons were first reported by Chen and Mills23 for materials with a third-
order nonlinear susceptibility, i.e., so-called Kerr nonlinear media, and quickly
thereafter, a large number of papers appeared elucidating the gap soliton’s prop-
erties. Other examples of solitons near the gap also followed. This chapter limits
the citations to a few papers35,36 and refers the reader to de Sterke and Sipe’s review
article.37 Several experiments were designed to explore the nonlinear response in
different regimes. Experimental tests of general nonlinear optical effects have been
attempted in several systems, including semiconductor wave guides,38 colloidal
solutions,39 and fiber Bragg gratings.40,41

Bragg solitons, which have the laser frequency tuned near but outside the band
gap, were studied by Eggleton et al.40,41 Gap solitons have the incident laser spec-
trum contained mostly in the gap region; they require that the nonlinearity be large
enough to shift the band gap away from the laser spectrum, thus creating trans-
parency. Taverner et al.42 used narrow-band gap fiber Bragg gratings driven by a
narrow-band source to achieve formation of the gap soliton.

Second-harmonic generation was among the first observed nonlinear optical
effects reported after the invention of the laser. It is also a success story, since there
have long been laser systems using the second harmonic to transform light from
one wavelength to another. Parametric processes are related second-order phenom-
ena that are also now applied to a wide range of systems to generate near- and
far-infrared and even terahertz radiation.

Large enhancement of second-harmonic generation in PBG systems was dis-
cussed in the context of band edge electric field enhancement and slow group ve-
locity phenomena by the groups of Scalora and Haus.28,29 Calculations showing
enhanced second harmonic generation in waveguides were reported by Pezzetta
et al.30 In all cases, a careful theoretical analysis of finite periodic systems shows
that several order of magnitude enhancement could be expected when the PBG
was designed to include these effects and phase matching. The nonlinear conver-
sion efficiency is predicted to increase as L6, where L is the length of the PBG. By
comparison, in a perfectly phase-matched sample, the conversion efficiency is pro-
portional to L2. With the additional enhancement from a PBG, compact samples
measuring only a few wavelengths in thickness can be used and modest incident
pump powers can be applied.

Several experimental tests of enhanced second-harmonic generation were per-
formed on multilayer stacks. Balakin et al.43 used alternated layers of ZnS and SrF.
Dumeige and coworkers44,45 reported second-harmonic experiments in molecular-
beam-epitaxy grown AlGaAs and AlAs multilayers. More than an order of magni-
tude enhancement was observed in each case. In each case, the experiments were
guided by theoretical calculations.

3.3 Higher dimensions

The qualitative character of PBGs is changed in higher dimensions. The off-axis
diffraction of the waves leading to coupling between plane wave modes in different
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directions leads to a number of new phenomena that can be exploited. First of all,
the bands are nonmonotonic, leading to changes in the group velocity direction
as well as its magnitude; and the Bloch waves of the structure have a particular
transverse symmetry that leads to uncoupled modes in the structure. An excellent
pedagogical and research book covering advanced topics in photonic crystals has
been recently published by Sakoda.4 A review of plane wave calculations in 3D
systems was published by Haus.46

Plane wave methods are developed for infinite lattices. Plane wave techniques
have been extended to explore the properties of lattices containing defects, but they
rely on an expansion of periodic functions. They reduce the problem to finding the
eigenvalues and eigenvectors of a generalized eigenproblem. The number of plane
waves is N . The matrixes are not sparse and many diagonalization schemes de-
mand a large amount of the computational time and memory allocation. Moreover,
convergence is difficult to achieve, due to high-spatial-frequency terms in the rela-
tive permittivity; the convergence goes as N−1/D , where D is the lattice dimension.
Hence, for higher dimensions, the matrixes must be made as large as possible to be
certain that the band structure features are correctly reproduced.

3.3.1 Vector wave equations

With the convenient assumption that the permittivity is not a function of the angular
frequency, Maxwell’s equations for E and H lead to the following vector wave
equations:

∇ ×∇ ×E(x, t)+ 1

c2

∂2

∂t2
ε(x)E(x, t)= 0, (3.54)

∇ × η(x)∇ ×H(x, t)+ 1

c2

∂2

∂t2
H(x, t)= 0. (3.55)

Here and hereafter, η(x)≡ 1/ε(x) and the relative permittivity

ε(x)= εb�b(x)+ εa�a(x) (3.56)

is linear, locally isotropic, positive-definite, and periodic with lattice vectors R;
whereas εb is the relative permittivity of the background material, and εa is that
of the inclusion material. The Heaviside functions ��(x) are unity in the region
occupied by the material � and vanish otherwise. For nonoverlapping spheres of
radius r , the spatial Fourier transform of ε(x) is

ε(G)= 1

Vcell

∫
WScell

d3xe−iG·xε(x)= εbδG,0 + 3f (εa − εb)
j1(Gr)

Gr
. (3.57)

The function j1(Gr) is the spherical Bessel function of order 1, while δG,G′ is
the 3D Kronecker delta. The eigenfunctions of Eqs. (3.54) and (3.55) are Bloch
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functions of the form

Enk(x, t)= exp[i(k · x−ωnkt)]
∑

G

Enk(G) exp[i(G · x)], (3.58)

Hnk(x, t)= exp[i(k · x−ωnkt)]
∑

G

Hnk(G) exp[i(G · x)], (3.59)

where G is a reciprocal lattice vector, k is the reduced wave vector in the first
Brillouin zone (BZ), and n is the band index including the polarization.

The Fourier coefficients EG ≡ Enk(G) and HG ≡Hnk(G) satisfy, respectively,
the infinite-dimensional matrix equations

(k+G)× [(k+G)×EG] + ω2

c2

∑
G′

εGG′EG′ = 0, (3.60)

(k+G)×
[∑

G′
ηGG′(k+G′)×HG′

]
+ ω2

c2
HG = 0, (3.61)

with εGG′ ≡ ε(G−G′) and ηGG′ ≡ η(G−G′). Their respective solutions consti-
tute the E and the H methods, respectively. The choice of other fields to express
the wave equation is redundant to these two, at least for nonmagnetic materials.
For instance, Zhang and Satpathy47 used the displacement field, which satisfies the
wave equation

∇ ×∇ × η(x)D(x, t)+ 1

c2

∂2

∂t2
D(x, t)= 0, (3.62)

but their method is identical to the H -method.48

The solution procedure required the truncation of the infinite set of reciprocal
lattice vectors to just N lattice vectors, which produces matrixes of size 3N × 3N

from Eqs. (3.60) and (3.61). Using ∇ · ∇ × E= 0 and ∇ ·H= 0, only 2N × 2N

matrixes turn out to be necessary.
Although the two methods yield the same spectrum when an infinite number

of plane waves are included, their truncated forms yield, in general, very different
spectra even when N equals a few thousands.

In the following subsections, results for 2D and 3D PBGs are highlighted. All
lengths are in units of a/2π , and the magnitudes of the wave vectors k and G are
in units of 2π/a, where a is the side of the real space conventional cubic unit cell
for the relevant Bravais lattice.

3.3.2 Two dimensions

The scalar wave equation has limited application in photonic band structures. Two-
dimensional periodic structures, such as rods in a lattice arrangement (Fig. 3.8),
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Figure 3.8 A 2D lattice of rods. The incident light propagates in the plane to which the rods
are perpendicular.

with the field polarized parallel to the rod axis satisfy scalar wave equations.49–54 In
this section, it is relevant to consider for a moment the analysis of the simpler scalar
problem and contrast the results with those of the vector equations in Sec. 3.3.6.

The derivation of the appropriate scalar wave equation depends upon the chosen
field polarization. When the electric field is oriented along the symmetry axis, the
equation is as follows:

∇2E − 1

c2
ε(x)

∂2E

∂t2
= 0. (3.63)

This leads to a generalized eigenvalue problem because the frequency eigenval-
ues, obtained by Fourier transformation in the time coordinate, are multiplied by
the periodic relative permittivity. For this reason, it is not precisely equivalent to
the Schrödinger equation, since the eigenvalue multiplies the “potential.” In 1D
periodic materials with the field propagating perpendicular to the surfaces, this is
equivalent to the Kronig-Penney model.55,56

When the magnetic field is oriented along the symmetry axis, the scalar wave
equation

∇ · η(x)∇H − 1

c2

∂2H

∂t2
= 0 (3.64)

emerges. This equation yields an ordinary eigenvalue problem for the frequency
that is equivalent to the Schrödinger equation with a periodically varied mass.

As discussed in Sec. 3.3.1, several methods can be applied to solving the two
foregoing equations. The simplest, the most widely used, and the most tractable
method is derived from the Bloch wave analysis of periodic structures. The eigen-
values and eigenvectors can be found by introducing the Bloch functions

φnk(x, t)= ei(k·x−ωnkt)
∑
G

φk(G)eiG·x, (3.65)

where G is the reciprocal lattice vector for the chosen lattice and the wave vector k
lies within the first BZ. The index n labels the band for a particular wave vector k.
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A triangular lattice and its reciprocal lattice are depicted in Fig. 3.9. A lattice
is decomposed into unit cells that repeat and tile the space. Each lattice point can
be reached from the origin by a linear combination of two primitive basis vec-
tors, which we denote by (b1, b2). The corresponding reciprocal lattice vectors are
defined by the relation

G� · bm = 2πδi�,m, (3.66)

where δ�,m is the Kronecker delta function. For example, the triangular lattice in
Fig. 3.9 has b1 = aêx and b2 = (a/2)êx + (

√
3a/2)êy as its basis vectors. The

corresponding reciprocal lattice vectors are G1 = (2π/a)[êx − (1/
√

3)êy] and
G2 = (4π/

√
3a)êy , as also depicted in the same figure. The reciprocal lattice is

constructed by summing combinations of the two basis reciprocal lattice vectors.
Also shown in Fig. 3.9 is the construction for the first BZ: perpendicular bisec-

tors of the reciprocal lattice points are drawn and where they intersect, the edge
of the first BZ is formed. The first BZ is a hexagon; the point at the center of the
zone is called the � point; two other important points are shown, the X point at
(2π/

√
3a)êy and the J point at (2π/

√
3a)[(1/

√
3)êx+ êy]. These three symmetry

points in the lattice appear in the following sections in which the band structure is
presented.

The equations are transformed into matrix equations when this expansion is
inserted into the wave equations, along with the spatial Fourier transform of either
the relative permittivity

ε(x)=
∑
G

ε(G)eiG·x, (3.67)

or of its inverse

Figure 3.9 A triangular lattice constructed from basis vectors b1 and b2. The reciprocal
lattice is also shown with the corresponding reciprocal lattice basis vectors G1 and G2 and
the boundary of the first Brillouin zone (BZ). The � point is at the center of the zone, while
the X and J points lie on the boundary.
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η(x)=
∑
G

η(G)eiG·x. (3.68)

The Fourier transform of Eq. (3.63) is

−|k+G|2EG+
(

ω

c

)2 ∑
G′

ε(G−G′)EG′ = 0, (3.69)

and similarly, the Fourier transform of Eq. (3.64) is

−(k+G) ·
∑
G′

(G−G′)η(G−G′)HG′ +
(

ω

c

)2

HG = 0. (3.70)

Determination of the eigenvalues again proceeds by truncating the series of am-
plitudes and diagonalizing the matrixes. Truncation has its pitfalls and extra care
must be exercised to obtain accurate and reliable results.48 The relative permittivity
has large disconinuities, which means that there are important Fourier components
at large reciprocal lattice vectors. The convergence of the Fourier amplitudes pro-
ceeds slowly and the number of terms required for a specified accuracy increases
as the power of the lattice dimensionality. The MATLAB program in Appendix B
can be used to study the eigenvalue spectra of Eqs. (3.69) and (3.70) for circular
cylinders.

3.3.3 Dielectric fluctuations

The dispersion curves are a result of the spatial variation of the relative permit-
tivity. The homogeneous medium has a linear relation between the wave number
and the frequency; but in a inhomogeneous medium, the waves are scattered and
interfere with one another and quantitative results require numerical computations.
The resulting dispersion curve is complicated. Nevertheless, we can crudely learn
about the size of the perturbation by considering the fluctuations of the relative
permittivity.48,46

The relative fluctuation of ε(x) from its spatial average provides a measure of
the spectrum’s deviation from the homogeneous medium. The relative permittivity
is expressed as

ε(x)= ε̄[1+ εr(x)], (3.71)

where ε̄ is the spatial average of ε(x) over the unit cell. As ε̄ is an overall scaling
factor, εr(x) is the relative ripple of the relative permittivity.

The perturbation parameter is related to the variance of the ripple〈
ε2

r

〉≡ 〈
ε2

fluc

〉
/ε̄2,
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the average is taken with respect to the unit cell volume. For more than one space
dimension, we find significant deviations from the linear dispersion relation when
〈ε2

r 〉 ∼ 1 or larger; and nonperturbative effects, such as band gaps for both linear
polarizations, begin to appear.

For any two-component medium [i.e., where ε(x) can assume only two values:
εa and εb], with the a-type medium occupying a volume fraction f of space, the
ripple variance

〈
ε2

r

〉= 〈ε2〉
ε̄2
− 1= f ε2

a + (1− f )ε2
b

[f εa + (1− f )εb]2 − 1. (3.72)

For fixed f , the ripple saturates in value as either of the two relative permittivities
goes to infinity. Given εa and εb, the value of f that maximizes 〈ε2

r 〉 is

fmax = εb

εa + εb

. (3.73)

The corresponding maximum variance of the ripple is

〈
ε2

r

〉= (εa − εb)2

4εaεb

. (3.74)

The computed relative bandwidth of the gap δω/ω as a function of εa and/or
f peaks roughly where 〈ε2

r 〉 does. For scalar waves in three dimensions, the quan-
titative agreement is excellent,57,58 while for vector waves the competition from
the effects of dielectric connectivity and complexity of the polarization eigenstate
shifts the transition region.

The ratio of the relative permittivities must be large, about 6, for large enough
perturbations to open a gap. Also, the low-permittivity material has a high volume
fraction (e.g., εb = 6 and fmax ≈ 0.86) when the ripple variance is unity. These
numbers provide a guide to search for the band gaps. This simple analysis is in ac-
cord with the observations that a band gap for both polarizations only exists when
the contrast between the two relative permittivities is large and the low-permittivity
material occupies most of the unit cell; also, increasing the ratio of relative permit-
tivities eventually leads to a saturation of the band structure features, such as, the
bandwidth of the gap.

3.3.4 Band structure

The band structure is computed by a straightforward matrix manipulation proce-
dure. The Fourier transform of the relative permittivity ε(x), for nonoverlapping
rods of radius r and relative permittivity εa in a background relative permittivity
εb, is

ε(G)= εbδG,0 + 2f (εa − εb)
J1(Gr)

Gr
, (3.75)
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where J1(Gr) is the cylindrical Bessel function of order 1. When G= 0, the aver-
age relative permittivity is ε(0)= f εa + (1− f )εb.

Truncation of the Fourier series results in a rounding-off of the relative permit-
tivity at the bimaterial interfaces. This occurs because a sharp interface represents
a structure with very high Fourier components and the convergence there is not
uniform. There is also the Gibbs phenomenon,59 which persists even in the limit
N →∞. Convergence can be a difficult problem indeed for the plane wave ex-
pansion. This problem is more critical in three dimensions. A representation of the
truncated relative permittivity is shown in Fig. 3.10. With N = 271 plane waves,
there are ripples in evidence; the convergence for this case is very good at least for
the lower frequency bands.

The band structure is computed by choosing values of the wave vector k and
solving Eqs. (3.69) and (3.70) as an eigenvalue problem. There are N eigenval-
ues for N plane waves. The lowest 10 to 20 eigenvalues are usually sufficient for
most applications. The MATLAB program in Appendix B only plots the lowest
six eigenvalues. The matrix subroutines are chosen for the generalized eigenvalue
problem. The H field computation is similar, but the program in Appendix B ap-
plies the inverse permittivity matrix η(G−G′). This is a choice made for conve-
nience only, but the user should be mindful of the slow convergence of the truncated
expansion before making any conclusions.

The band structure when the H field is parallel to the rods is shown in Fig. 3.11.
There is a large gap that opens up between the first and the second bands. The
volume fraction of the low-permittivity material is f = 0.906, which means that
the rods are close packed; and the ratio of relative permittivities equals 5. The

Figure 3.10 The relative permittivity ε(x) of a 2D triangular lattice, reconstructed from its
spatial Fourier transform ε(G) with N = 271. Top: εb/εa = 3. Bottom: εb/εa = 25. The con-
vergence in both cases is about the same.
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horizontal axis represents a path in the BZ, which can be understood by reference
to Fig. 3.9. The third vertical axis in Fig. 3.11 represents the J point on the zone
boundary, from which point the path leads directly to the center of the zone until
the � point is reached. Next, the path turns directly to the X point, and from there
back to the J point.

The results are presented in Fig. 3.12 for the case when the electric field is par-
allel to the rods. The same itinerary is chosen, as in Fig. 3.11. For several values of
εa , the bands transform from straight lines without dispersion in the homogeneous
limit (i.e., εa = εb = 1) to a strong fluctuation limit in which large band gaps are
in evidence. A gap opens up between the second and the third bands, when εb/εa

is around 10. A complete gap for both polarizations is only found for very large
ratios of the permittivities. This is one distinction between the 1D and 2D band
structures: In two (and higher) dimensions, band gaps appear when f and εb/εa

are sufficiently large.

3.3.5 Band eigenfunction symmetry and uncoupled modes

Another new property of wave propagation is found in higher dimensions. To this
point, we have been concerned only with the eigenvalues of the bands, but the
eigenfunctions have symmetry properties derived from the underlying lattice. Un-
coupled modes in PBGs were first identified by Robertson et al.60,61 in terahertz
propagation experiments where the transmission vanishes, but the density of states
does not vanish. This occurs because the uncoupled mode is antisymmetric under

Figure 3.11 Band structure when the H field is parallel to the rods (made of air), whose
volume fraction f = 0.906. The relative permittivity of the background material is εb = 5,
while εa = 1.
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Figure 3.12 Band structure when the electric field is parallel to the rods (made of air). The
permittivity ratio εb/εa = 1, 3, 10 and 18. A gap forms between the second and the third
bands in the lower left frame; this is close to the value for band gap formation based on the
dielectric fluctuation argument.

a mirror plane reflection, whereas the external incident wave is symmetric under
this same reflection. Hence, the coupling of the two waves vanishes.

The calculation of photonic band structure is insufficient to provide a qualita-
tive explanation of the transmission spectra. Boundary conditions and finite-size
effects are important factors, and gaps in the transmission spectra are found where
eigenmodes are present in the spectrum. However, the modes are uncoupled from
the incident wave due to a symmetry mismatch between the incoming wave and
the eigenmode of the photonic crystal. In other words, the eigenmodes of the pho-
tonic crystal are either symmetric or antisymmetric with respect to operations of
the group that leave the crystal unchanged, and the incoming plane wave also has a
definite symmetry with respect to the same operations; hence, when the plane wave
and the eigenmode have opposite symmetries, they do not couple. Group theoretic
methods can be applied to tag each band by its eigenfunction’s symmetry, requiring
the numerical computation of eigenfunctions only for a few cases.

For 2D lattices, Maxwell’s equations can be reduced to a scalar form. Group-
theoretical analysis4,62–64 of such structures was confirmed by experiments on tri-
angular and square lattice structures.65,66 Uncoupled modes add a new aspect to
finding novel applications for photonic crystals; they do not exist in 1D photonic
crystals. Two-dimensional photonic crystals are also fabricated with micron or sub-
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micron lattice constants,67–70 which makes them candidates for further study to
develop a number of applications using these new concepts.

For 2D structures, both theoretical analyses and experimental results are avail-
able from the microwave to the visible regimes. In the microwave regime, the lat-
tice constant is machined on the order of millimeters.51,60,61,71 Two-dimensional
hollow-rod structures in glass were fabricated with a lattice constants of a micron
or less.67,69 There are potential applications of this technology to optoelectronic
devices. Etching in semiconductor materials is another avenue to producing good
PBG structures.

The band structure of a 2D triangular lattice composed of air holes was exam-
ined both theoretically and experimentally in the terahertz regime by Wada et al.66

They demonstrated a transmission minimum for one polarization in a region where
no band gap is expected. A larger gap was found for the uncoupled mode and the
characteristics were in good agreement with calculations.

Microchannel plate samples have been developed for several new applications
by filling the air holes with a specifically doped fluid material. Two example appli-
cations are optical limiting and lasing.

Laser action was reported in samples where a dye-filled solution was placed
in the air holes. Lasing was found to be correlated with a flat-band feature of the
photonic band spectrum.72 Below the lasing threshold, broadband emission is ex-
pected. However, near the threshold two peaks were observed, which became spec-
trally narrow as the pump fluence increased. The interesting feature is the lasing
peak found off the gain maximum and thus, lasing is not normally favored at this
wavelength. However, the band structure has a flat band at this wavelength, which
means that the group velocity is small and the effective interaction length is longer
in the medium.72 Lasing due to this feature has been identified in many different
samples with fluid-modified relative permittivity.

3.3.6 Three dimensions

The 3D scalar wave equation, analogous to Eq. (3.63), has been studied in detail by
Datta et al.73 All cubic structures have been investigated with spheres around each
lattice point: simple cubic (SC), body-centered cubic (BCC), and face-centered cu-
bic (FCC), as well as the diamond structure consisting of two spheres per unit cell.
When low-permittivity spheres are embedded in a high-permittivity background
medium, we denote this case as the air sphere material. For the scalar wave equa-
tion, band gaps open up for all cases between the first and the second bands, and
again between the fourth and the fifth bands. The cases of dielectric spheres and air
spheres are both interesting and display common features; the gaps can be as large
as about 30%, and the size of a gap saturates as the ratio of relative permittivities
becomes large. This is consistent with the saturation of the dielectric fluctuations
discussed in Sec. 3.3.3.

The volume fraction at which the level gap is widest is closely given by the
maximum of relative permittivity fluctuations; see Eq. (3.73). The gaps begin to
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appear roughly when the magnitude of the dielectric fluctuations is near unity. The
plane wave method has the advantage of allowing a simple check on the conver-
gence; namely, the actual relative permittivity can be compared with the truncated
one.48

A large body of literature already exists on vector-wave band structure calcu-
lations in three dimensions.47,57,58,74–80 Many experiments have been designed to
prove the basic principles, to learn about the structures, and to investigate other
phenomena such as defect modes.82,83 Chemists have synthesized opal structures
and inverse opal structures, where the core sphere is coated by another material and
then the core is removed by etching.84 The submicron spheres have strong disper-
sion and band gaps in the visible or the near-infrared regimes. Semiconductor fab-
rication methods have been developed to build structures layer-by-layer.85,86 Full
3D band gaps have been observed in the infrared regime from 3D PBG structures.

3.3.6.1 Three-dimensional band calculation results

The earliest treatment of 3D periodic lattices was for the FCC structure. The first
experiments were performed with machined samples in the millimeter lattice con-
stant regime. The choice of an FCC lattice was based on the idea that Brillouin
zones without protruding edges were more likely to form full band gaps. The BZ
for the FCC structure is quite round in shape, as depicted in the inset in Fig. 3.13.

In treating the FCC lattice, there are two situations to examine: dielectric
spheres embedded in a host with the relative permittivity of air (dielectric spheres)
and spherical voids in a dielectric background (air spheres). Experimentalists have
examined the case of air spheres. The frequency regime was investigated in a range
where the second and third bands lie and no complete gap was found; however, a
pseudo-gap was identified. The pseudo-gap is evident at the W point in Fig. 3.13 as
a point of a degeneracy between the second and third bands. The density of states
is reduced in this region, making an appearance similar to a full band gap. The
air spheres were overlapping on the lattice, so the volume fraction of air is very
high (≈ 72%). A full band gap was identified by Sozuer et al.48 for the air-sphere
FCC lattice between the eighth and ninth bands. This gap lies above the frequency
regime region reported by the experiments and is it missing in the earliest papers
due to poor convergence of the plane wave expansion. Figure 3.13 is a plot of the
band structure for εb = 16, εa = 1, and f = 0.74.

Opal structures synthesized by using nanometer-sized spheres of silica or some
other substance will self-assemble into FCC crystals. The structures can be infil-
trated in various ways to completely cover the surface of the spheres. On sinter-
ing the spheres before infiltration, the spheres bind together enough so that the
silica can be chemically extracted. This leaves the inverse opal structure. An in-
verse opal structure of graphite was reported by Zakhidov et al.84 in 1998, and
several research groups have since reported improvements in the synthesis of opa-
line structures.87

The study of PBG materials with the periodicity of the SC lattice was un-
dertaken because of its geometric simplicity, which could possibly translate into
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Figure 3.13 Band structure for for close-packed air spheres on a FCC lattice; c̄ ≡ c/
√

ε̄;
εb = 13, εa = 1, f = 0.74, and N = 749. Inset shows the path in the BZ. (Reprinted with
permission from Ref. 48, © 1992 The American Physical Society.)

easier fabrication. The SC lattice also provides a framework in which structures
with different topologies can be investigated, since the computational results ob-
tained for the FCC structures indicate a strong relationship between connectivity
and photonic band gaps. The band structures of a variety of geometries—involving
nonoverlapping spheres, overlapping spheres, and the topologically equivalent
structures with rods of circular and square cross section along the three Cartesian
axes—were reported by Sözüer and Haus.76

The simplest “square-rod” structure is when the faces of the rods are oriented
parallel to those of the unit cell; see Fig. 3.14. When the volume fraction of the
dielectric material is 50%, the topologies of both types of media become identical.
Photonic band gaps exist for these structures. The band structure corresponding to
the square square-rod SC lattice is shown in Fig. 3.15. The inset shows the BZ for
the SC lattice, which is the squarest of the Bravais lattice types.

3.3.6.2 Band symmetry

The simple cubic lattice of spheres has been chosen to study the details of the sym-
metries of the band eigenfunctions.88 The band structure was calculated when the
radii of the spheres were smaller than close-packed. Two cases are of importance:
(1) dielectric spheres embedded in a host dielectric medium and (2) air holes (i.e.,
spherical voids) cut out of a dielectric medium. In both cases, the ratio of high to
low relative permittivities must be high. The band structures can be calculated for
the SC lattice using the plane wave method.

Symmetries have been assigned to the first seven bands in Fig. 3.16 based on
the group theory symmetry. The angular frequency is scaled by the lattice constant
a and a numerical factor including the speed of light, i.e., a/2πc. The waves prop-
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Figure 3.14 The square-rod structure. (Reprinted with permission from Ref. 76, © 1993
OSA.)

Figure 3.15 Band structure for square rods on a SC lattice; c̄ ≡ c/
√

ε̄; εb = 13, εa = 1, and
f = 0.82. Inset shows the path in the BZ. (Reprinted with permission from Ref. 76, © 1993
OSA.)

agating in the �–M direction have an environment with reduced symmetry and the
lowest bands for the two polarizations are nondegenerate. The wave vector is along
the (1, 1, 0) axis. This is a twofold symmetry direction, C2v . The irreducible rep-
resentations are A1, A2, B1, and B2. At the M point, the irreducible representation
of the D4h symmetry is A1g , A1u, B1g , B1u, A2g , A2u, B2g , B2u, Eg , and Eu. The
corresponding symmetry of the H field vector has also been elucidated.89

The �–M symmetry contains invariance under two mirror reflection opera-
tions. One is the vertical plane defined by the �–Z and �–M lines; the other is
the horizontal plane defined by the �–X and �–M lines. The eigenfunctions are
either symmetric or antisymmetric with respect to these operations. We define the
symmetry with respect to the E field vector, a complex vector field amplitude.
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Figure 3.16 Band structure of the infinite simple cubic lattice of air holes. The E method
calculations use N = 729 plane waves for each polarization and the cubic symmetry was
deformed by 1% for direct comparison with the transmittance. The scaled radius of the air
holes is 0.495 and the relative permittivity ratio is 13. The dashed lines for modes 2 and 3 in
the �–M direction couple only to the s-polarization; the solid lines for bands 1 and 4 couple
only to the p-polarization. A p-polarization gap exists between bands 4 and 5. The vertical
bars show the positions of the gaps.

Note that B1 is symmetric with respect to the horizontal plane and antisymmet-
ric with respect to the vertical plane. It can be coupled to an incident s-polarized
wave, which is polarized parallel to the horizontal plane; this mode is colored blue
and is a dashed line. By contrast, B2 (denoted by the solid line) is symmetric with
respect to the vertical plane and antisymmetric with respect to the horizontal plane;
it can couple with a p-polarized wave, whereas A1 (dashed dotted line) is symmet-
ric with respect to both planes, and A2 (also a dashed-dotted line) is antisymmetric
in both planes. These uncoupled modes are not excited by incident plane waves.

3.3.6.3 Transfer matrix method

Transfer matrix methods are useful for systems where the sample has an infi-
nite transverse extent, but a finite thickness. A program developed by Pendry and
coworkers is available for basic transfer matrix computations. This program has
been rewritten by Andrew Reynolds to incorporate a graphics user interface (GUI).
Several freeware programs that are useful for PBG calculations can be downloaded
from http://www.pbglink.com/software.html.

The transfer matrix is much more useful for device development than the plane
wave method because, as already demonstrated for 1D layers, boundary condi-
tions change the wave amplitudes inside the PBG; these features are present in the
transmission results. Calculations are automatically done with a group of matrix
diagonalization subroutines. In the transfer matrix method, the computational time
is proportional to N , where N is the number of grid points for a single layer. The
transfer matrix method becomes very efficient as layers are doubled, thus allowing
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calculations of thick crystals. The grid spacing is typically about 10 to 15 points
per lattice period.

The transmission spectrum is calculated by applying the transfer matrix
method. The transfer matrix method is a generalization of the algorithm used to
solve propagation in 1D layered materials to complex multidimensional structures.
In analogy with its 1D counterpart, the transfer matrix method incorporates all
wave vectors at fixed angular frequency, even the ones that have complex-valued
components leading to decay of the wave amplitude through the medium. The in-
coming wave is assumed to be a plane wave that, in general, may be obliquely
incident.

This section gives only an outline of the approach developed by Pendry.90 It is
based on a finite difference scheme that divides space into fine cells. The transverse
directions are assumed to be periodic and extend to infinity. Sakoda has used a
plane wave expansion technique that gives equivalent results with the same degree
of accuracy.4

The transfer matrix method begins with Maxwell’s equations in the frequency
domain. Loss in a medium is expressed through a complex-valued relative permit-
tivity; we do not consider magnetic media here. Faraday’s law and Ampere’s law
are extracted from Eqs. (3.1) in the form

−iωε0ε(x)E=∇ ×H, −iωB=−∇ ×E. (3.76)

The sample is oriented with its end faces perpendicular to the z axis. The z

components of the fields can be algebraically eliminated, leaving four field com-
ponents to be solved. The field values in some plane with defined z are known, and
values in the new plane z+�z are sought. This requires further rewriting the four
equations to separate the z derivatives from the rest. The difference rule is the same
in all cases; thus,

∂Ex(x, y, z)

∂z
≈ Ex(x, y, z+�a)−Ex(x, y, z)

�a
, (3.77)

etc.
For simplicity, we assume the discretization is performed on a cubic lattice of

side �a. Finally, the following scaling transformation is performed on the H field
H′ = (i/ω�a)H (where the prime does not indicate differentiation). The E field
equations are expressed in terms of the E and H fields in the previous plane as
follows:

Ex(x, y, z+�a)=Ex(x)+ �a2ω2

c2
H ′y(x)+ 1

ε(x)
[H ′y(x −�a, y, z)−H ′y(x)

−H ′x(x, y −�a, z)+H ′x(x −�a, y, z)]
− 1

ε(x +�a, y, z)
[H ′y(x)−H ′y(x +�a, y, z)
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−H ′x(x +�a, y −�a, z)+H ′x(x +�a, y, z)], (3.78)

Ey(x, y, z+�a)=Ey(x)− �a2ω2

c2 H ′x(x)+ 1

ε(x)
[H ′y(x −�a, y, z)

−H ′y(x)−H ′x(x, y −�a, z)+H ′x(x −�a, y, z)]

− 1

ε(x, y +�a, z)
[H ′y(x −�a, y +�a, z)

−H ′y(x, y +�a, z)

−H ′x(x)+H ′x(x +�a, y +�a, z)]. (3.79)

Subsequently, the H fields are expressed in terms of the H fields in the previous
plane and the E fields in the same plane as follows:

Hx
′(x, y, z+�a)=Hx

′(x)+ ε(x, y, z+�a)Ey(x, y, z+�a)

− c2

�a2ω2
[Ey(x −�a, y, z+�a)

−Ey(x −�a, y, z+�a)

−Ex(x −�a, y +�a, z+�a)+Ex(x −�a, y, z+�a)]

+ c2

�a2ω2
[Ey(x +�a, y, z+�a)−Ey(x, y, z+�a)

−Ex(x, y +�a, z+�a)+Ex(x, y, z+�a)], (3.80)

Hy
′(x, y, z+�a)=Hy

′(x)+ ε(x, y, z+�a)Ey(x, y, z+�a)

− c2

�a2ω2
[Ey(x +�a, y −�a, z+�a)

−Ey(x, y −�a, z+�a)

−Ex(x, y, z+�a)+Ex(x −�a, y −�a, z+�a)]

+ c2

�a2ω2
[Ey(x +�a, y, z+�a)−Ey(x, y, z+�a)

−Ex(x, y +�a, z+�a)+Ex(x, y, z+�a)]. (3.81)

For a structure with N ×N ×N cells, the transfer matrixes are of dimension
4N2, yielding a very efficient representation of the computational problem. The
matrixes are also sparse, which makes the solution of even large matrix equations
fast when specialized matrix methods are used.

In the following, we exemplify the use of the transfer matrix methods and
demonstrate the interplay that can exist between the plane wave method and the
transfer matrix method. For computating the transmission, the computer program
developed by Pendry’s group91 was used.
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3.3.6.4 Transmission spectra

The transfer matrix method is a powerful tool for analyzing the properties of PBG
structures. Here, results are provided for a simple cubic lattice of spheres. For prop-
agation along the �–M direction with a crystal that is 32 periods thick, transmis-
sion data is plotted in Fig. 3.17. There is a considerable shift in the width and the
depth of the band gaps as the sample thickness is increased, but 32 layers provide a
clear determination of the band gap positions. The oscillations at low frequencies
are of the Fabry–Pérot type arising due to reflections from opposite planes. These
oscillations are strongly affected by the sample thickness; indeed, at low frequen-
cies where only one band gap is found, the number of oscillations is used by us to
verify the number of layers. Oscillations also occur at the higher frequencies, but
they are difficult to interpret because of the strong dispersion in the bands and the
existence of multiply excited bands with different dispersion.

To apply Pendry’s method to the �–M direction, the unit cell is slightly de-
formed. The separation of the sphere centers is

√
2 in the propagation direction,

but is unity in the transverse directions. The unit cell’s geometry is modified to
make the lateral to longitudinal length ratio 10:14. This creates a deformed SC
geometry, a contraction of 1% along the longitudinal direction making the lattice
parameters 0.99:0.99:1.0. This distortion does not noticeably affect the band struc-
ture, however.

The band structure presented in Fig. 3.16 was calculated by the E method for
the deformed SC lattice of air holes with scaled radii r = 0.495 (i.e., they are nearly
touching). The symmetries of the lowest seven bands in the �–M direction were
assigned. A direct gap opens between the second and the third bands, but there is
no common gap over all directions. The direct gap is found with both the E and H

methods. The �–M direction is distinguished by the nondegeneracy of the bands.

Figure 3.17 The p- and s-polarization transmission spectra along the �–M direction for a
SC lattice of air holes in a sample that is 32 periods thick. The scaled radius of the air holes
is 0.495 and the relative permittivity ratio is 13.
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By examining the symmetry of each band, we determine whether an incoming
wave will be coupled to it.

The validity of the analysis is checked by the structure of the transmission
spectra. From the band structure calculations and group analysis, two gaps are
identified for p-polarization and one for the s-polarization. The positions of the
gaps are indicated in Fig. 3.16. The corresponding transmission spectra for p- and
s-polarization are plotted in Fig. 3.17. On comparison, the gaps extracted from the
computations are close to the band structure results from Fig. 3.16.

To further demonstrate the importance of band symmetry on transmission, we
present results for dielectric spheres with scaled radii r = 0.297. Then the volume
fraction of spheres is low enough that no direct gaps are observed in the spectrum.
The band structure and transmission spectra are available in Figs. 3.18 and 3.19.
There is strong dispersion in the band structure, including the appearance of dis-
tinct nonmonotonic bands. The density of states is nonzero over the entire fre-
quency range, which makes this case a good candidate to demonstrate the corre-
spondence between band symmetry and the transmission features.

Figure 3.18 predicts large, distinct gaps in transmission spectra, as expected
from group-theory arguments. In each case, the appearance of the uncoupled A1

or A2 modes spans a portion of the gap region. The lowest two bands for each lin-
ear polarization are in good quantitative agreement with the transmission spectra.
Although the volume fraction is small, the appearance of large gaps due entirely
to predicted uncoupled modes means that the device design parameters based on
these features are not stringent. Indeed, the features appear over a wide range of
volume fractions.

Figure 3.18 Band structure of the infinite simple cubic lattice of dielectric spheres. The E
method calculations use N = 729 plane waves for each polarization and the cubic symmetry
was deformed by 1% for direct comparison with the transmittance. The scaled radius of the
air holes is 0.297 and the relative permittivity ratio is 13.
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Figure 3.19 The p- and s-polarization transmission spectra along the �–M direction for a
SC lattice of dielectric spheres in a sample that is 32 periods thick. The scaled radius of the
spheres is 0.297 and the relative permittivity ratio is 13.

3.3.6.5 Finite-difference time-domain method

A powerful but computationally intensive method for solving Maxwell’s equations
is the FDTD method. As the somewhat lengthy, but descriptive title implies, this
method discretizes Maxwell’s equations in the spatiotemporal domain, whether or
not dispersion in the medium is accounted for. Actually, what is called the FDTD
method depends on which form of Maxwell’s equations is discretized.

The most popular FDTD algorithm is called the Yee method,92 which is based
on solving Maxwell’s curl equations, rather than the wave equation. The differenc-
ing scheme is consistent with Faraday’s and Ampere’s laws. The Yee method is
formulated using a technique called the leap-frog method. The E and H fields are
evaluated in alternate half steps. This technique and the corresponding algorithm
can be found in Taflove’s book.93

The FDTD method is a computationally intensive method, but can be applied
to complex, finite, 3D geometries and transient sources. It has been employed for
the accurate determination of localized defect-mode frequencies and Q-factors.
Important are the grid density—typically, 15 to 20 points per wavelength (or per
lattice constant)—and appropriate absorbing boundary conditions. Lattice size is
ultimately limited by memory (without swapping the grid). The memory size is
reducible by taking advantage of the mode symmetry, thus reducing the required
number of sites in the lattice. The algorithm is amenable to high-performance com-
putation, as the lattice can be distributed among many processors.

In its simplest form—for systems with high symmetry—the electromagnetic
equations are reducible to a scalar wave equation, which can be discretized by
using explicit and implicit schemes. Even the vector wave equations Eqs. (3.54)
and (3.55) can be discretized for an accurate description of one particular vector
field.
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For 2D systems, when the electric field is aligned parallel to the symmetry axis,
Eq. (3.63) must be addressed. According to an explicit discretization using steps of
�x, �y, and �t , the derivatives are approximated by a central difference scheme
as follows:

∂2E(x, y, t)

∂t2
≈ E(x, y, t +�t)+E(x, y, t −�t)− 2E(x, y, t)

(�t)2
, (3.82)

∂2E(x, y, t)

∂x2
≈ E(x +�x, y, t)+E(x −�x, y, t)− 2E(x, y, t)

(�x)2
, (3.83)

∂2E(x, y, t)

∂y2
≈ E(x, y +�y, t)+E(x, y −�y, t)− 2E(x, y, t)

(�y)2
. (3.84)

Each time step solves for time t +�t given the information about the previous two
times and nearest-neighbor spatial points. Either the field is prescribed at an initial
time or an oscillating dipole source term can be incorporated to radiate into the
PBG structure.

Several types of boundary conditions can be implemented. The simplest way
perhaps is to keep the endpoints of the lattice far enough so that the field does not
reflect back to the region of interest; periodic boundary conditions can be used with
the same caveat. As these schemes waste memory space, better schemes continue
to be reported.

Transparent boundary conditions are used to match the outgoing wave to a
one-way propagator. Paraxial wave equations can be discretized to determine the
boundary fields. Naturally, the uncertainty in the matching condition and the vari-
ations in the angle of incidence provide a small backward wave, which generates
spurious interference effects.

A perfectly matched layer (PML) is a region at the end of the computational do-
main, introduced so that the incoming wave is impedance-matched at the boundary.
The dielectric and magnetic constitutive parameters of PMLs are complex-valued,
resulting in absorption of the wave without a reflection. The PML method is very
effective in suppressing boundary effects over a wide range of angles of incidence.

Maxwell’s equations in vector form can be discretized using a simple differ-
encing scheme. The simplest discretization, with �t as the time step and �a as the
step, of Maxwell’s curl equations is as follows:

Ex(x, t +�t)

=Ex(x, t)+ �t

�a

Hz(x, t)−Hz(x, y −�a, z, t)−Hy(x, t)+Hy(x, y, z−�a, t)

ε0ε(x)
, (3.85)

Ey(x, t +�t)

=Ey(x, t)+ �t

�a

Hx(x, t)−Hx(x, y, z−�a, t)−Hz(x, t)+Hz(x −�a, y, z, t)

ε0ε(x)
, (3.86)

Ez(x, t +�t)

=Ez(x, t)+ �t

�a

Hy(x, t)−Hy(x −�a, y, z, t)−Hx(x, t)+Hx(x, y −�a, z, t)

ε0ε(x)
, (3.87)
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Hx(x, t +�t)

=Hx(x, t)− �t

�a

Ez(x, t)−Ez(x, y −�a, z, t)−Ey(x, t)+Ey(x, y, z−�a, t)

µ0
, (3.88)

Hy(x, t +�t)

=Hy(x, t)− �t

�a

Ex(x, t)−Ex(x, y, z−�a, t)−Ez(x, t)+Ez(x −�a, y, z, t)

µ0
, (3.89)

Hz(x, t +�t)

=Hz(x, t)− �t

�a

Ey(x, t)−Ey(x −�a, y, z, t)−Ex(x, t)+Ex(x, y −�a, z, t)

µ0
. (3.90)

More elaborate schemes are commonly available.93,94

3.3.6.6 FDTD results for defect modes

The vector electromagnetic field in a 2D photonic lattice, with its plane of period-
icity designated as the xy plane, can be decoupled into two independent modes:

• Transverse electric (TE) modes: the E field is perpendicular to the plane of
periodicity, and the nonzero field components are Ez, Hx , and Hy ); and

• Transverse magnetic (TM) modes: the H field is perpendicular to the plane
of periodicity, and the nonzero field components are Ex , Ey , and Hz.

A line of dipoles at the center of the defect may be introduced for the TE case.
The dipoles are oriented perpendicular to the plane of periodicity. Such TE defect
modes have been thoroughly investigated in 2D photonic lattices (square and tri-
angular) by Sakoda using the scalar FDTD method.95,98 The TE defect mode in
a square lattice is localized close to the defect site, as shown in Fig. 3.20. There
is very good agreement (1) between numerical results obtained from either the
discretized scalar wave equation method or the full vectorial FDTD method and
(2) between experimental results of McCall et al.,51 on a 2D square photonic lat-
tice with circular dielectric rods immersed in air for a large permittivity contrast.

The lattice defect is formed by the removal of a dielectric rod from the center
of the lattice. A resonance frequency is clearly identified after 20 periods of oscil-
lation and continues to sharpen as energy continues to build up in the defect mode.
The plot of the electric field profile along the x axis in Fig. 3.20 shows that the
field is concentrated close to the defect. The field is confined to a region around the
defect extending out to about three lattice constants. The difference between nu-
merical and experimental results is less than 1%. Similarly favorable comparison
of theoretical results has been reported for TE modes on a triangular lattice with
experimental results.51

The square lattice does not have a band gap for TM modes, but a triangular
lattice containing air holes in a dielectric background medium does show a sizable
gap. Calculations were made for the lattice geometry depicted in Fig. 3.21: εa is
the relative permittivity of the rods of radius r , and εb is the relative permittivity
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of the background medium. A defect in the form of an air rod with a modified
radius rdefect was introduced in the center of the lattice. To couple with different
defect-mode symmetries, the orientation of the oscillating dipole can be changed.
Depending on the dipole excitation and the size of the defect rod, different modes
will appear.

The band structure for TM modes is shown in Fig. 3.22. The calculation was
based on the plane wave method with N = 919 basis vectors. The relative error

Figure 3.20 The electric field as a function of the distance from a dipole in square photonic
lattice, after 100 periods of oscillations, when ωa/2πc = 0.467. The dipole models a defect.
(Reprinted with permission from Ref. 99, © 2001 The American Physical Society.)

Figure 3.21 The top view of a 2D triangular array of circular rods used for examining TM
defect modes; εa and εb denote the relative permittivities of the rods and the background
medium, respectively; r and rdefect are the radii of the lattice rods and the defect rod, respec-
tively, while a denotes the lattice constant. (Reprinted with permission from Ref. 99, © 2001
The American Physical Society.)
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was determined by comparing the results for different numbers of plane waves
with the asymptotic value. The error depends on the band number and increases
from less than 1% for the first few bands up to 6% for the eighth band. The first
gap in Fig. 3.22 exists between the first and second bands, while the second gap
lies between the seventh and eight bands, for the chosen parameters.

To illustrate that the TM modes have well-defined resonance frequencies, a line
of dipoles is placed at the center of the defect rod. The ratio of the defect radius
to unit cell dimension is rdefect/a = 0.35, while r/a= 0.48. The dipoles are driven
at different frequencies and the radiated energy is computed. Figure 3.23 shows
the electromagnetic energy radiated as a function of the oscillation frequency. The
peak in the radiated energy spectrum at ωa/2πc = 0.461 represents the eigenfre-
quency of the defect mode. This peak is well established after 25 oscillation periods
and it continues to grow and narrow as more time elapses. After 100 oscillation pe-
riods, the full width at half maximum width of the resonance is about 0.005, which
corresponds to a Q-factor of around 100. As saturation of the peak width is not
observed, the Q-factor is larger than that observed after 100 oscillation periods.

The chosen photonic crystal has C6v symmetry and, therefore, six irreducible
representations.4,99 By changing the radius of the defect rod and the dipole ori-
entation, different defect modes with different symmetries appear. The H field is
concentrated in the regions with larger relative permittivity, just as for the E field.
Sakoda and Shiroma100 demonstrated that the spatial variation of the electric fields
is faster for the modes in the second gap than for those in the first gap.

A typical plot of the the defect-mode resonance frequency versus defect rod
radius is presented in Fig. 3.24. The horizontal lines in the figure represent the

Figure 3.22 Band structure of a regular triangular lattice for TM modes, calculated by
the plane wave method using 919 basis functions. The following parameters were as-
sumed: r/a = 0.48, rdefect/a = 0.48, εa = 1, and εb = 13. A large band gap exists between
ωa/2πc = 0.375 and 0.52 in the normalized units. The �–X direction is along the sec-
ond-nearest-neighbor lines through the crystal (i.e., the y axis in Fig. 3.21), and the �–X
direction is along the nearest neighbor lines through the crystal (i.e., the x axis). (Reprinted
with permission from Ref. 99, © 2001 The American Physical Society.)
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boundaries of the band gap. As the ratio rdefect/a increases, the eigenfrequencies of
the photonic crystal modes tend to rise monotonically and linearly due to the larger
air fraction and resulting lower average index. As shown in Refs. 100 and 101, the
eigenfrequency is proportional to 1/

√
εrdefect . With decreasing defect radius, the ef-

fective relative permittivity at the defect increases proportionally to r2
defect. Hence,

with constant relative permittivity and variable defect radius, the eigenfrequency
versus defect radius relation becomes ωrdefect ∼ rrdefect .

The energy accumulated in the defect unit cell can be used to determine the
localization properties for different defect-mode frequencies (i.e., ratios rdefect/a).
The defect mode is localized within a few unit cells of the defect position.

Figure 3.23 The frequency dependence of the total radiated energy for a TM mode radiated
by an oscillating dipole at the center of a defect rod after 25, 50, 75 and 100 oscillation
periods; r/a = 0.48 and rdefect/a = 0.35. (Reprinted with permission from Ref. 99, © 2001
The American Physical Society.)

Figure 3.24 The eigenfrequencies of two localized defect modes as functions of the nor-
malized radius of the defect rod, where r/a = 0.48. The two horizontal lines represent the
boundaries of the photonic band gap calculated from Fig. 3.22. (Reprinted with permission
from Ref. 99, © 2001 The American Physical Society.)
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Further applications of the FDTD method are commonplace. Sakoda’s book4

has a detailed analysis of the symmetry properties of defect modes in various pho-
tonic crystal geometries. The real behavior of the devices is complex, but com-
putations have identified favorable geometries and placed limits on the losses.
Results for point and line defects clearly identify the resonance frequencies and
the defect-mode symmetries. Lin et al.102 reported a series of millimeter-wave ex-
periments on samples with line or point defects. They showed that the Q-factor
increases by adding rows of dielectric rods in the lateral direction around a line
defect. A plateau for the spectral width of the defect mode was reached after eight
layers in their study. Numerical studies with a small dielectric loss added largely
explain the experiments103 with additional losses incurred due to the finite lattice
size in the third dimension.

PBG slabs with finite height have been investigated by many researchers, be-
cause such structures confine the field and control the diffraction losses. For in-
stance, Painter et al.101 explored the coupling of light to leaky modes, which fur-
ther reduced the Q-factors of point defects in PBG cavities. Paddon and Young104

as well as Ochiai and Sakoda105 examined the role of mode symmetry on the cou-
pling of light to leaky modes. Two-dimensional slabs can have reduced diffraction
losses because the internal modes are forbidden by symmetry to couple with the
radiation modes. This property is related to the symmetry forbidden transmission
of uncoupled modes previously discussed for 2D and 3D PBGs.

3.4 Summary

Computational techniques for PBGs are available to provide detailed results. For
instance, if the band gap or mode symmetry is desired, the simple plane wave
method can be applied to give basic design information, i.e., the existence of band
gaps for different polarizations and the eigenfunction symmetry. Using the plane
wave method, researchers have shown that many different geometries—including
the face-centered cubic lattice,48 the diamond lattice,75 the simple cubic lattice,76

and intersecting rod geometries83—possess full band gaps. The eigenfunctions can
be used to develop a set of coupled-mode equations for application to finite system
geometries.

However, as this chapter indicated, the plane wave method is primarily re-
stricted to information about infinite systems. More powerful methods can be re-
cruited to study more complex media and device geometries, such as the transfer
matrix method and the FDTD method. Systems with finite thickness are amenable
to solution by the transfer matrix method. This has been very useful in determining
the transmission spectra, and comparison with experiments have been very favor-
able. The FDTD method is costly in terms of computation time and memory, and
problems can very easily exceed the capabilities of current computers. However,
the FDTD method is an excellent simulation tool that has provided a great deal of
insight into the propagation of light through PBG structures. The beam propagation
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method can cover forward- and backward-wave coupling, is simpler to implement,
and is less demanding on computational resources than the FDTD method.

Based on the computational simulations, several applications have been identi-
fied. Filtering and waveguiding are the most obvious applications. In addition, by
careful design low-threshold lasing is predicted in PBGs due to the a variety of
effects such as high Q due to uncoupled modes, low group velocity due to flatten-
ing of the dispersion bands, and field confinement near a defect or by transmission
resonances from the end faces.

3.5 Appendix A

Program for the plane-wave calculation of the transmission and reflection coeffi-
cients in a 1D layered structure.

Main Program:
clear;
% Calculate change of a intensity profile after
% transmitting a multiple thin film system
% Written by Feiran Huang on 05/31/99. Update
% JW Haus 11/16/99
% Updated and corrected by JW Haus on 8/21/2002
%-------------------------
% given parameters for film system, n,k,d of
% various wavelength given expression of input
% intensity profile in time domain and
% center wavelength

v=[500 2100 0 1];
%film thickness information

d1=1000/2/1.4285714; d2=1000/4/1.;
% number of periods

m=10;
% angle of incidence

fi0=0/180*pi;
% superstrate index

n00=[1. 1. 1. 1. 1.];
% wavelength vector

lambda=v(1):.5:v(2);
% wavelengths used for dielectric data

ld0=[180 500 600 800 6100];
% real part of the complex-valued refractive index
% of film 1

n10=[1.4285714 1.4285714 1.4285714 1.4285714
1.4285714];

% imaginary part of the complex-valued refractive
% index of film 1

Downloaded from SPIE Digital Library on 18 Jun 2012 to 58.97.130.72. Terms of Use:  http://spiedl.org/terms



90 Joseph W. Haus

k10=[0.0 0.0 0.0 0.0 0.0];
% real part of the complex-valued refractive index
% of film 2

n20=[1.0 1.00 1.00 1.00 1.00];
% imaginary part of the complex-valued refractive
% index of film 2

k20=[0.0 0.0 0.0 0.0 0.0];
% substrate refractive index (real-valued only)

n30=[1. 1. 1. 1. 1.];
n0=interp1(ld0,n00,lambda); n1=interp1(ld0,n10,

lambda);
k1=interp1(ld0,k10,lambda); n2=interp1(ld0,n20,

lambda);
k2=interp1(ld0,k20,lambda); n3=interp1(ld0,n30,

lambda);
% Reflection and transmission coefficients are
% calculated

[Tp,Rp,Ts,Rs]=f_2mlyr(n0,n1,k1,n2,k2,n3,d1,d2,m,fi0,
lambda);

figure(1);
plot(lambda, Tp,’b’,lambda, Ts,’r’);
figure(2);
plot(lambda, Rp,’b’,lambda, Rs,’r’);
ylabel(’Transmittance’);
xlabel(’Wavelength (nm)’); grid on; axis(v);

% field amplitude calculation, a single wavelength
% is used.

lambdae=1405.26;
n0e=interp1(ld0,n00,lambdae); n1e=interp1(ld0,n10,

lambdae);
k1e=interp1(ld0,k10,lambdae); n2e=interp1(ld0,n20,

lambdae);
k2e=interp1(ld0,k20,lambdae); n3e=interp1(ld0,n30,

lambdae);
% The field amplitudes from the boundary conditions
% are calculated

[Ees,Eep,fi1,fi2,fi3]=f_2mlyrAmp(n0e,n1e,k1e,n2e,k2e,
n3e,d1,d2,m,fi0,...lambdae);

% The data are plotted after constructing fields
% inside the PBG

count=1;
dz1=d1/10; dz2=d2/10;
for jj=1:m %check for the initial value 1 or 2

% layer 1
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for kk=0:9
Eys(count)=(((Ees(1,2*jj)*exp(-i*2*pi*(n1e-i*k1e)

*cos(fi1)/lambdae*kk*dz1))...
+(Ees(2,2*jj)*exp(i*2*pi*(n1e-i*k1e)*cos(fi1)/

lambdae*kk*dz1))));
Exp(count)=(((Eep(1,2*jj)*exp(-i*2*pi*(n1e-i*k1e)

*cos(fi1)/lambdae*kk*dz1))+...
(Eep(2,2*jj)*exp(i*2*pi*(n1e-i*k1e)*cos(fi1)/lambdae

*kk*dz1)))*cos(fi1));
count=(count+1);
end

% layer 2
for kk=0:9
Eys(count)=(((Ees(1,2*jj+1)*exp(-i*2*pi*(n2e-i*k2e)

*cos(fi2)/lambdae*kk*dz2))...
+(Ees(2,2*jj+1)*exp(i*2*pi*(n2e-i*k2e)*cos(fi2)/

lambdae*kk*dz2))));
Exp(count)=(((Eep(1,2*jj+1)*exp(-i*2*pi*(n2e-i*k2e)

*cos(fi2)/lambdae*kk*dz2))...
+(Eep(2,2*jj+1)*exp(i*2*pi*(n2e-i*k2e)*cos(fi2)/

lambdae*kk*dz2))).*cos(fi2));
count=(count+1);
end
end

figure(3)
plot(abs(Exp).^2)

figure(4)
plot(abs(Eys).^2)

Function called from the main program to compute the transmission and reflec-
tion coefficients
function
[Tp,Rp,Ts,Rs]=f_2mlyr(n0,n1,k1,n2,k2,n3,d1,d2,m,fi0,

lambda)
% calculate transmittance and reflectance of a
% multi-layer system
% Written by Feiran Huang 05/31/99.
% Last Update 08/13/2002 Amplitudes of the fields
% added.
%-------------------------
%
for n=1:length(lambda)

fi1=asin(sin(fi0)*n0(n)/(n1(n)+i*k1(n)));
phi1(n)=fi1;
fi2=asin(sin(fi0)*n0(n)/(n2(n)+i*k2(n)));
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phi2(n)=fi2;
fi3=asin(sin(fi0)*n0(n)/n3(n));
phi3(n)=fi3;
[r01p,t01p,r01s,t01s]=f_rtamp(n0(n),0,n1(n),k1(n),

fi0,fi1);
[r12p,t12p,r12s,t12s]=f_rtamp(n1(n),k1(n),n2(n),

k2(n),fi1,fi2);
[r21p,t21p,r21s,t21s]=f_rtamp(n2(n),k2(n),n1(n),

k1(n),fi2,fi1);
[r23p,t23p,r23s,t23s]=f_rtamp(n2(n),k2(n),n3(n),0,

fi2,fi3);
delta01=0;
delta12=2*pi*(n1(n)-i*k1(n))*d1*cos(fi1)/lambda(n);
delta21=2*pi*(n2(n)-i*k2(n))*d2*cos(fi2)/lambda(n);
delta23=2*pi*(n2(n)-i*k2(n))*d2*cos(fi2)/lambda(n);
C01p=[1 r01p; r01p 1];
C12p=[exp(i*delta12) r12p*exp(i*delta12); ...
r12p*exp(-i*delta12) exp(-i*delta12)];
C21p=[exp(i*delta21) r21p*exp(i*delta21); ...
r21p*exp(-i*delta21) exp(-i*delta21)];
C23p=[exp(i*delta23) r23p*exp(i*delta23); ...
r23p*exp(-i*delta23) exp(-i*delta23)];
Ap=C01p*C12p;
tp=t01p*t12p;
for j=1:m-1

Ap=Ap*C21p*C12p;
tp=tp*t21p*t12p;

end
Ap=Ap*C23p;
tp=tp*t23p;
Rp(n)=abs(Ap(2,1)/Ap(1,1))^2;
Tp(n)=n3(n)*cos(fi3)/n0(n)/cos(fi0)*abs(tp/

Ap(1,1))^2;
C01s=[1 r01s; r01s 1];
C12s=[exp(i*delta12) r12s*exp(i*delta12); ...
r12s*exp(-i*delta12) exp(-i*delta12)];
C21s=[exp(i*delta21) r21s*exp(i*delta21); ...
r21s*exp(-i*delta21) exp(-i*delta21)];
C23s=[exp(i*delta23) r23s*exp(i*delta23); ...
r23s*exp(-i*delta23) exp(-i*delta23)];
As=C01s*C12s;
ts=t01s*t12s;
for j=1:m-1

As=As*C21s*C12s;
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ts=ts*t21s*t12s;
end
As=As*C23s;
ts=ts*t23s;
Rs(n)=abs(As(2,1)/As(1,1))^2;
Ts(n)=n3(n)*cos(fi3)/n0(n)/cos(fi0)*abs(ts/

As(1,1))^2;
end

Function called to compute the field amplitudes.
function
[Ees,Eep,fi1,fi2,fi3]=f_2mlyrAmp(n0,n1,k1,n2,k2,n3,d1,
d2,m,...fi0,lambda)
% calculate transmittance and reflectance of a
% multi-layer
% system. JW Haus 08/13/2002 Amplitudes of the
% fields added.
%-------------------------

fi1=asin(sin(fi0)*n0/(n1-i*k1));
phi1=fi1;
fi2=asin(sin(fi0)*n0/(n2-i*k2));
phi2=fi2;
fi3=asin(sin(fi0)*n0/n3);
phi3=fi3;
[r01p,t01p,r01s,t01s]=f_rtamp(n0,0,n1,k1,fi0,fi1);
[r12p,t12p,r12s,t12s]=f_rtamp(n1,k1,n2,k2,fi1,fi2);
[r21p,t21p,r21s,t21s]=f_rtamp(n2,k2,n1,k1,fi2,fi1);
[r23p,t23p,r23s,t23s]=f_rtamp(n2,k2,n3,0,fi2,fi3);
delta01=0;
delta12=2*pi*(n1-i*k1)*d1*cos(fi1)/lambda;
delta21=2*pi*(n2-i*k2)*d2*cos(fi2)/lambda;
delta23=2*pi*(n2-i*k2)*d2*cos(fi2)/lambda;
C01p=[1 r01p; r01p 1];
C12p=[exp(i*delta12) r12p*exp(i*delta12); ...
r12p*exp(-i*delta12) exp(-i*delta12)];
C21p=[exp(i*delta21) r21p*exp(i*delta21); ...
r21p*exp(-i*delta21) exp(-i*delta21)];
C23p=[exp(i*delta23) r23p*exp(i*delta23); ...
r23p*exp(-i*delta23) exp(-i*delta23)];

% field amplitude calculations p-polarization
% transmitted field amplitude
Temp=[1 0]’;
Eep(:,2*m+2)=Temp;
% Amplitude in the last layer
Temp=C23p*Temp/t23p;
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Eep(:,2*m+1)=Temp;
for j=0:m-2

Temp=C12p*Temp/t12p;
Eep(:,2*(m-j))= Temp;
Temp=C21p*Temp/t21p;
Eep(:,2*(m-j)-1)= Temp;

end
Temp=C12p*Temp/t12p;
Eep(:,2)=Temp;
Temp=C01p*Temp/t01p;
Eep(:,1)=Temp;
% NORMALIZING AMPLITUDE

Eep=Eep/Eep(1,1);
C01s=[1 r01s; r01s 1];
C12s=[exp(i*delta12) r12s*exp(i*delta12); ...
r12s*exp(-i*delta12) exp(-i*delta12)];
C21s=[exp(i*delta21) r21s*exp(i*delta21); ...
r21s*exp(-i*delta21) exp(-i*delta21)];
C23s=[exp(i*delta23) r23s*exp(i*delta23); ...
r23s*exp(-i*delta23) exp(-i*delta23)];

% field amplitude calculations s-polarization
% transmitted field amplitude
Temp=[1 0]’;
Ees(:,2*m+2)=Temp;
% Amplitude in the last layer
Temp=C23s*Temp/t23s;
Ees(:,2*m+1)=Temp;
for j=0:m-2

Temp=C12s*Temp/t12s;
Ees(:,2*(m-j))= Temp;
Temp=C21s*Temp/t21s;
Ees(:,2*(m-j)-1)= Temp;

end
Temp=C12s*Temp/t12s;
Ees(:,2)=Temp;
Temp=C01s*Temp/t01s;
Ees(:,1)=Temp;

% NORMALIZING AMPLITUDE
Ees=Ees/Ees(1,1);

end
Function called by the preceding function programs to compute the Fresnel

coefficients
function [rp,tp,rs,ts]=f_rtamp(n1,k1,n2,k2,fi1,fi2)
%calculate amplitude of transmission and reflection
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%Written by Feiran Huang on 05/31/99. Last
%Update 05/31/99
%-------------------------
%given index and absorption
n1=n1-i*k1; n2=n2-i*k2;

rp=(n1*cos(fi2)-n2*cos(fi1))/(n1*cos(fi2)+n2
*cos(fi1));

rs=(n1*cos(fi1)-n2*cos(fi2))/(n1*cos(fi1)+n2
*cos(fi2));

tp=2*n1*cos(fi1)/(n1*cos(fi2)+n2*cos(fi1));
ts=2*n1*cos(fi1)/(n1*cos(fi1)+n2*cos(fi2));

3.6 Appendix B

Plane-wave method programs. The E method calculates the eigenvalues for the
electric field polarized parallel to the rods. Comments are inserted that change the
program to the H method.
% Program for calculating the E-polarized
% band structure of the triangular lattice.
% Lines are inserted to convert it to band
% structure computation for the H-polarized waves.
% A parameter determining the number of plane waves

N1 = 9;
pi = acos(-1.0);

% The lattice constant is scaled to unity. The radius
% of the rod.

d=1.; a=.48;
% Volume fraction of rod in the unit cell.

bbeta =3.14159*a*a/d/d*2.0/sqrt(3.0);
% relative permittivities.

EPSA=1.; % ROD DIELECTRIC
EPSB=10.;% MATRIX DIELECTRIC

% The major symmetry points in the Brillouin zone are
% defined

gxg = 0.0; gyg = 0.0;
gxx = 0.0; gyx = 2.0*pi/sqrt(3.0);
gxj =2.0*pi/3.0; gyj = 2.0*pi/sqrt(3.0);

% The itinerary around the Brillouin zone is laid out.
gxi(1) = gxx;
gyi(1) = gyx;
gxi(2) = gxg;
gyi(2) = gyg;
gxi(3) = gxj;
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gyi(3) = gyj;
gxi(4) = gxx;
gyi(4) = gyx;

% Construct the wave vectors used in the plane
% wave calculation

L=0;
gx1 = 2.0*pi;
gy1 = -2.0*pi/sqrt(3.0);
gx2 = 0.0;
gy2 = 2.0*pi*2.0/sqrt(3.0);

% generate all the wave vectors within a hexagon of
% diameter 2*n1.
for ii=-N1:N1;

for j=-N1:N1;
if ( (-(N1+1)<(ii+j)) & ((ii+j)<(N1+1))),

L=L+1;
gx(L) = gx1*ii + gx2*j;
gy(L) = gy1*ii + gy2*j;

end;
end;

end;
% Construct the dielectric matrix.
% The volume of the unit cell is defined

vcel = sqrt(3.0)/2.0*d*d;
for ii=1:L;

EPS(ii,ii) = bbeta*EPSA + (1.0-bbeta)*EPSB;
%% H-method insert the following line to replace
% the preceding line.
% Construct the inverse-dielectric matrix
% EPS(ii,ii)= bbeta/EPSA+(1.0-bbeta)/EPSB;

i1= ii + 1;
for j=i1:L;

x1 = gx(ii) - gx(j);
x2 = gy(ii) - gy(j);
x = sqrt(x1*x1+x2*x2)*a/d;
EPS(ii,j)= 2.0*pi*(EPSA-EPSB)*a*a/(vcel)

*besselj(1,x)/x;
%% H-method insert the following line to replace the
% preceding line.
% Construct the inverse-dielectric matrix
% EPS(ii,j)= 2.d0*pi*(1/EPSA-1/EPSB)*a*a/(vcel)
% *besselj(1,x)/x;
% The matrix is symmetric

EPS(j,ii)= EPS(ii,j);
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end;
end

% Use the itinerary constructed above to move around
% the Brillouin zone

n=L;
% Counter for the number of points in the itinerary

nknt = 1;
for nk = 1:3;

nk1 = nk+1
nmax= 20;

for l=1:nmax;
dkx =(l-1)*(gxi(nk1)-gxi(nk))/(nmax) + gxi(nk);
dky =(l-1)*(gyi(nk1)-gyi(nk))/(nmax) + gyi(nk);

for ii=1:n;
a(ii,ii) = ((dkx+gx(ii))^2 + (dky+gy(ii))^2)/

4.0/pi/pi;
b(ii,ii) = EPS(ii,ii);
for j=ii+1:n;

a(ii,j) = 0.0;
a(j,ii) = 0.0;
b(ii,j) = EPS(ii,j);
b(j,ii) = EPS(ii,j);

end
end

%% H-method insert the following lines and replace the
% preceding 10 lines
% for ii=1:n;
% a(ii,ii)= EPS(ii,ii)*((dkx+gx(ii))^2

+(dky+gy(ii))^2)/4.0/pi/pi;
% for j=ii+1:n;
% a(ii,j)= EPS(ii,j)*((dkx+gx(ii))*(dkx+gx(j))

+(dky+gy(ii))*...
% (dky+gy(j)))/4.0/pi/pi;
% a(j,ii)= a(ii,j);
% end
% end
% Find the eigenvalues

v=eig(a,b);
% Find the eigenvalues for the H-method. Replace
% the preceding line.
% v=eig(a);
% Store the lowest 10 eigenvalues for plotting

for li=1:10;
rr(nknt,li)=v(li);
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kxx(nknt)=nknt-1;
end

nknt = nknt + 1;
end

end

% Plot lowest six eigenvalues

figure(1)
hold on;
plot(kxx,rr(:,1)); plot(kxx,rr(:,2));
plot(kxx,rr(:,3)); plot(kxx,rr(:,4));
plot(kxx,rr(:,5));plot(kxx,rr(:,6));
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List of symbols

Am amplitude in the mth layer for waves traveling in the positive z

direction
B B field vector
c speed of light in vacuum
Cm amplitude in the mth layer for waves traveling in the negative z

direction
D electric displacement vector
E electric field vector
Enk plane wave Fourier component of the electric field vector for the

nth band and wave vector k
f volume fraction of low-permittivity medium in a two-medium

structure
G magnitude of G
G reciprocal lattice vector
H H field vector
Hnk plane wave Fourier component of the H field vector for the nth

band and wave vector k
I 2× 2 unit matrix
k Magnitude of Bloch wave vector for 1D PBG at normal incidence
k wave vector
ka , kb wave numbers in media a and b

km wave number in the mth layer for waves traveling in the positive z

direction
L thickness of a periodic structure
M 2× 2 transfer matrix
nm index of refraction of the mth medium
neff effective index of refraction for the PBG
P medium polarization
r1 complex-valued reflection amplitude for a unit cell
rN complex-valued reflection amplitude for an N -period PBG
t time
t1 complex-valued transmission amplitude for a unit cell
tN complex-valued transmission amplitude for an N -period PBG
TN transmission for an N -period PBG
vg group velocity
x≡ (x, y, z) position vector
α angle of planewave incidence
αm angle of refraction in the mth layer
δ(·) Dirac delta function
δG,G′ , δm,m′ Kronecker delta functions
ε relative permittivity
ε0 permittivity of vacuum
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εa , εb relative permittivities of media a and b

εGG′ relative permittivity matrix in the plane wave basis
η inverse relative permittivity
ηGG′ inverse relative permittivity matrix in the plane wave basis
θ0 complex angle representation for eigenvalues of the transfer ma-

trix M
�m Heaviside function for the mth medium
λ eigenvalue of matrix M
λ0 wavelength in vacuum
µ relative permeability
µ0 permeability of vacuum
µa, µb relative permeabilities of media a and b

ρN density of modes for an N -period PBG
χ linear dielectric susceptibility
ω angular frequency
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4.1 Introduction

4.1.1 What are they?

The research of microelectronic materials is driven by the need to tailor electronic
and optical properties for specific component applications. Progress in epitaxial
growth and advances in patterning and other processing techniques have made it
possible to fabricate “artificial” dedicated materials for microelectronics.1 In these
materials, the electronic structure is tailored by changing the local material com-
position and by confining the electrons in nanometer-size foils or grains. Due to
quantization of electron energies, these systems are often called quantum struc-
tures. If the electrons are confined by a potential barrier in all three directions,
the nanocrystals are called quantum dots (QDs). This review of quantum dots be-
gins with discussion of the physical principles and first experiments and concludes
with the first expected commercial applications: single-electron pumps, biomole-
cule markers, and QD lasers.

In nanocrystals, the crystal size dependency of the energy and the spacing of
discrete electron levels are so large that they can be observed experimentally and
utilized in technological applications. QDs are often also called mesoscopic atoms
or artificial atoms to indicate that the scale of electron states in QDs is larger than
the lattice constant of a crystal. However, there is no rigorous lower limit to the
size of a QD, and therefore even macromolecules and single impurity atoms in a
crystal can be called QDs.

The quantization of electron energies in nanometer-size crystals leads to dra-
matic changes in transport and optical properties. As an example, Fig. 4.1 shows
the dependence of the fluorescence wavelength on the dimensions and material
composition of the nanocrystals. The large wavelength differences between the
blue, green, and red emissions result here from using materials having different
band gaps: CdSe (blue), InP (green), and InAs (red). The fine-tuning of the fluo-
rescence emission within each color is controlled by the size of the QDs.

The color change of the fluorescence is governed by the “electron in a potential
box” effect familiar from elementary text books of modern physics.3 A simple
potential box model explaining the shift of the luminescence wavelength is shown
in the inset of Fig. 4.1. The quantization of electron states exists also in larger
crystals, where it gives rise to the valence and conduction bands separated by the
band gap. In bulk crystals, each electron band consists of a continuum of electron
states. However, the energy spacing of electron states increases with decreasing
QD size, and therefore the energy spectrum of an electron band approaches a set
of discrete lines in nanocrystals.

As shown in Sec. 4.4, another critical parameter is the thermal activation en-
ergy characterized by kBT . For the quantum effects to work properly in the actual
devices, the spacing of energy levels must be large in comparison to kBT , where
kB is Boltzmann’s constant, and T the absolute temperature. For room-temperature
operation, this implies that the diameter of the potential box must be at most a few
nanometers.

Downloaded from SPIE Digital Library on 18 Jun 2012 to 58.97.130.72. Terms of Use:  http://spiedl.org/terms



110 Fredrik Boxberg and Jukka Tulkki

Figure 4.1 Nanocrystal quantum dots (NCQD) illuminated by UV-light emit light at a wave-
length that depends both on the material composition and the size of the NCQDS. Large
differences in the fluorescence wavelength result from different band gaps of the materials.
Within each color (blue, green, and red) the wavelength is defined by the different sizes of
the NCQDs.

In quantum physics, the electronic structure is often analyzed in the terms of
the density of electron states (DOS). The prominent transformation from the con-
tinuum of states in a bulk crystal to the set of discrete electron levels in a QD is de-
picted in Fig. 4.2. In a bulk semiconductor [Fig. 4.2(a)], the DOS is proportional to
the square root of the electron energy. In quantum wells (QWs) [see Fig. 4.2(b)], the
electrons are restricted into a foil that is just a few nanometers thick. The QW DOS
consists of a staircase, and the edge of the band (lowest electron states) is shifted
to higher energies. However, in QDs the energy levels are discrete [Fig. 4.2(c)] and
the DOS consists of a series of sharp (delta-function-like) peaks corresponding to
the discrete eigenenergies of the electrons. Due to the finite life time of electronic
states, the peaks are broadened and the DOS is a sum of Lorenzian functions. Fig-
ure 4.2(c) also depicts another subtle feature of QDs: In an experimental sample
not all QDs are of the same size. Different sizes mean different eigenenergies; and
the peaks in the DOS are accordingly distributed around some average energies
corresponding to the average QD size. In many applications, the active device ma-
terial contains a large ensemble of QDs. Their joint density of states then includes
a statistical broadening characterized by a Gaussian function.4 This broadening is
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(a) (b) (c)

Figure 4.2 The density of electron states (DOS) in selected semiconductor crystals. The
DOS of (a) bulk semiconductor, (b) quantum well, and (c) quantum dots.

often called inhomogeneous in distinction to the lifetime broadening, often called
homogeneous broadening.4

4.1.2 History

Fabrication of QDs became possible because of the development of epitaxial
growth techniques for semiconductor heterostructures. The prehistory of QDs be-
gan in the early 1970s with nanometer-thick foils called quantum wells. In QWs
charge carriers (electrons and holes) become trapped in a few-nanometers-thick
layer of wells, where the band gap is smaller than in the surrounding barrier layers.
The variation of the band gap is achieved by changing the material composition of
the compound semiconductor.5

The energy quantization in the optical absorption of a QW was first reported
by Dingle et al.6 in 1974. The photon absorption spectrum exhibits a staircase of
discrete exciton resonances, whereas in the photon absorption of a bulk semicon-
ductor only one exciton peak and the associated continuum is found. The transport
properties of QW superlattices (periodic system of several QWs) were studied in
the early 1970s by Esaki and Tsu.7 The resonance tunneling effect and the related
negative differential resistance was reported by Chang et al.8 in 1974. These works
began the exponential growth of the field during the 1970s; for a more complete
list of references, see Bimberg et al.4

The experimental findings of Dingle et al.6 were explained by the envelope
wave function model that Luttinger and Kohn9 developed for defect states in
semiconductor single crystals. Resonant tunneling of electrons was explained in
terms of quantum-mechanical transmission probabilities and Fermi distributions at
source and drain contacts. Both phenomena were explained by the mesoscopic be-
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havior of the electronic wave function,9 which governs the eigenstates at the scale
of several tens of lattice constants.

By the end of 1970, nanostructures could be fabricated in such a way that the
mesoscopic variation of the material composition gave rise to the desired elec-
tronic potentials, eigenenergies, tunneling probabilities, and optical absorption.
The quantum engineering of microelectronic materials was promoted by the Nobel
prizes awarded in 1973 to L. Esaki for the discovery of the tunneling in semi-
conductors and in 1985 to K. von Klitzing et al.10 for the discovery of the quan-
tum Hall effect. Rapid progress was made in the development of epitaxial growth
techniques: Molecular beam epitaxy11 (MBE) and chemical vapor deposition12

(CVD) made it possible to grow semiconductor crystals at one-monolayer accu-
racy.

In the processing of zero-dimensional (0D) and 1D structures, the develop-
ment of electron beam lithography made it possible to scale down to dimensions
of a few nanometers. Furthermore, the development of transmission electron mi-
croscopy (TEM), scanning tunneling microscopy (STM), and atomic force mi-
croscopy (AFM) made it possible to obtain atomic-level information of the nanos-
tructures.

Figure 4.3 presents the discovery of level quantization in QDs reported by Eki-
mov and Onushenko13 in 1984. The resonance structures are directly related to the
energy quantization. One of the first measurements14 of transport through a QD is
shown in Fig. 4.4. In this case, the conductance resonance can be related to dis-
crete charging effects that block the current unless appropriate QD eigenstates are
accessible for electronic transport.

4.2 Fabrication

In the following, we limit our discussion to selected promising QD technologies
including semiconductor nanocrystal QDs (NCQD), lithographically made QDs

Figure 4.3 Photoabsorption by a set of CdS nanocrystals having different average radii
as follows: (1) 38 nm, (2) 3.2 nm, (3) 1.9 nm, and (4) 1.4 nm. The inset marks the dipole
transitions that are seen as resonances in absorption. The threshold of the absorption is
blue-shifted when the size of the QD becomes smaller.13
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(LGQDs), field-effect QDs (FEQDs), and self-assembled QDs (SAQDs). The main
emphasis is on semiconductor QDs. Selected material parameters of the nanostruc-
tures are listed in Table 4.1.

Table 4.1 Selected room-temperature properties for the previously discussed materials.32

Material Band gap (eV) Electron mass (m0) Hole mass (m0) Permittivity (ε0)

CdS 2.482(d) 0.165a mA
p⊥ = 0.7 ε⊥(0)= 8.28

mA
p‖ = 5 ε⊥(∞)= 5.23

ε‖(0)= 8.73
ε‖(∞)= 5.29

CdSe 1.738(d) 0.112a mA
p⊥ = 0.45 ε⊥(0)= 9.29

mA
p‖ ≥ 1 ε‖(0)= 10.16

mB
p⊥ = 0.92 ε(∞)= 5.8

GaAs 1.5192(d) 0.0635 mhh[100] = 0.33 ε(0)= 12.80
mhh[111] = 0.33 ε(∞)= 10.86
mlh[100] = 0.090
mlh[111] = 0.077

InAs 0.4180(d) 0.023 mhh = 0.57 ε(0)= 14.5
m[100] = 0.35 ε(∞)= 11.6
m[111] = 0.85

InP 1.344(d) 0.073 mhh = 0.65 ε(0)= 12.61
mlh = 0.12 ε(∞)= 9.61

Si 1.13(i) m⊥ = 0.1905I mhh = 0.537I ε= 11.9
m‖ = 0.9163I mlh = 0.153I

(I The effective masses of Si are low temperature data T = 4.2 K). The low- and high-frequency
permittivities are denoted by ε(0) and ε(∞), respectively. The superscripts ⊥ and ‖ correspond to
permittivities for the electric field perpendicular (E ⊥ c) and parallel (E ‖ c) with the c axis of the
crystal.

Figure 4.4 Conductance through a QD as a function of the gate voltage. Regions (a) and (c)
indicate blocking of current by the Coulomb charging effect. In (b) electrons can tunnel from
source to drain through empty electron states of the QD, thereby leading to a peak in the
conductance. Note the rapid smearing of the resonance as the temperature increases.14

(Reprinted with permission from Ref. 14, © 1991 The American Physical Society.)
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4.2.1 Nanocrystals

A nanocrystal (NC) is a single crystal having a diameter of a few nanometers.
A NCQD is a nanocrystal that has a smaller band gap than the surrounding material.
The easiest way to produce NCQDs is to mechanically grind a macroscopic crystal.
Currently NCQDs are very attractive for optical applications because their color is
directly determined by their dimensions (see Fig. 4.1). The size of the NCQDs can
be selected by filtering a larger collection of NCQDs or by tuning the parameters
of a chemical fabrication process.

4.2.1.1 CdSe nanocrystals

Cadmium selenide (CdSe) and zinc selenide (ZnSe) NCQDs are approximately
spherical crystalites with either wurtzite or zinc-blend structure. The diameter
ranges usually between 10 and 100 Å. CdSe NCQDs are prepared by standard
processing methods.15 A typical fabrication procedure for CdSe NCQDs is de-
scribed in Ref. 16. Cd(CH3)2 is added to a stock solution of selenium (Se) powder
dissolved in tributylphosphine (TBP). This stock solution is prepared under N2 in a
refrigerator, while tri-n-octylphosphine oxide (TOPO) is heated in a reaction flask
to 360◦C under argon (Ar) flow. The stock solution is then quickly injected into
the hot TOPO, and the reaction flask is cooled when the NCQDs of the desired
size is achieved. The final powder is obtained after precipitating the NCQDs with
methanol, centrifugation, and drying under nitrogen flow. The room-temperature
quantum yield and photostability can be improved by covering the CdSe NCQDs
with, e.g., cadmium sulphide (CdS).

By further covering the CdSe NCQDs by CdS, for example, the room-
temperature quantum yield and photostability can be increased. The almost ideal
crystal structure of a NCQD can be seen very clearly in the TEMs shown in
Fig. 4.5.

Figure 4.5 TEM images of CdSe/CdS core/shell NCQDs on a carbon substrate in (a) [001]
projection and (b) [100] projection. Dark areas correspond to atom positions. The length
bar at the right indicates 50 Å. (Reprinted with permission from Ref. 16, © 1997 American
Chemical Society.)
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Electron confinement in CdSe NCQDs is due to the interface between CdSe
and the surrounding material. The potential barrier is very steep and at most equal
to the electron affinity of CdSe. Even if the growth technique is fairly easy, it is
very difficult to integrate single NCQDs into semiconductor chips in a controlled
way, whereas the possibility to use them as biological labels or markers is more
promising.2

4.2.1.2 Silicon nanocrystals

Silicon/silicon dioxide (Si/SiO2) NCQDs are Si clusters completely embedded in
insulating SiO2.17 They are fabricated by ion-implanting Si atoms into either ultra-
pure quartz or thermally grown SiO2. The NCs are then formed from the implanted
atoms under thermal annealing. The exact structure of the resulting NCQDs is not
known. Pavesi et al.17 reported successful fabrication of NCQDs with a diameter
around 3 nm and a NCQD density of 2× 1019 cm−3. The high-density results17

in an even higher light wave amplification (100 cm−1) than for seven stacks of
InAs QDs (70 to 85 cm−1). The main photoluminescence peak was measured at
λ= 800 nm. The radiative recombination in these QDs is not very well understood,
but Pavesi et al. 17 suggested that the radiative recombinations take place through
interface states. Despite the very high modal gain, it is very difficult to fabricate an
electrically pumped laser structure of Si NCQD due to the insulating SiO2.

4.2.2 Lithographically defined quantum dots

4.2.2.1 Vertical quantum dots

A vertical quantum dot (VQD) is formed by either etching out a pillar from a
QW or a double barrier heterostructure18,19 (DBH). Figure 4.6 shows the main
steps in the fabrication process of a VQD. The AlGaAs/InGaAs/AlGaAs DBH
was grown epitaxially, after which a cylindrical pillar was etched through the DBH.
Finally, metallic contacts were made for electrical control19 of the QD. Typical QD
dimensions are a diameter of about 500 nm and a thickness of about 50 nm. The
confinement potential due to the AlGaAs barriers is about 200 meV. The optical
quality of VQDs is usually fairly poor due to the etched boundaries. However,

Figure 4.6 Fabrication process of a VQD consists mainly of (a) epitaxial growth of a BDH,
(b) etching of a pillar through the DBH, and (c) the metallization (following Ref. 19). The QD
of the device is defined by the DBH and the side gate. (d) The final device.

Downloaded from SPIE Digital Library on 18 Jun 2012 to 58.97.130.72. Terms of Use:  http://spiedl.org/terms



116 Fredrik Boxberg and Jukka Tulkki

VQDs are attractive for electrical devices because of the well-controlled geometry
and the well-defined electrical contacts.

4.2.2.2 Si quantum dots

Si QDs discussed here are lithographically defined Si islands either completely
isolated by SiO2 or connected to the environment through narrow Si channels.
Si QDs can be fabricated using conventional CMOS technology on a silicon-on-
insulator (SOI) wafer. The SOI wafer enables complete electrical isolation from
the substrate. Figure 4.7 shows schematically the fabrication process20 of Si QDs.
A narrow wire is etched using electron beam lithography from the top Si layer.
The QD is then formed in the wire by thermal oxidation. The oxidation rate is
sensitive to the local O2 influx and the local strain field. Both depend strongly on
the geometry and, as a result, the center of the Si wire is oxidized very slowly
compared to the rest. Therefore, the oxidation process gives rise to constrictions
pinning off the wire from the leads, resulting in a Si QD in the center of the wire.
This technique has been developed21 further to fabricate double QDs and even
memory and logical gate devices.22 The main advantage of this technique is the
easy integration to CMOS circuits. Si QDs do also have the potential to operate
at room temperature due to very high carrier confinement (VC ≈ 3 eV) and small
size. However, these Si QDs cannot be used for optical applications due to the low
quantum efficiency of Si.

4.2.3 Field-effect quantum dots

In a FEQD, the charge carriers are confined into a 2D electron gas (2DEG) by a
modulation-doped heterojunction. Within the 2DEG plane, the charges are electro-
statically confined by external gates. Figure 4.8(a) shows schematically a typical
device geometry, whereas Fig. 4.8(b) represents a more sophisticated double QD
system. The ohmic contacts in Fig. 4.8(a) represent any kind of electric contacts
to the QD. The effective potential of a FEQD is very smooth and, within the plane

Figure 4.7 Fabrication process of a Si QD: (a) bird’s eye perspective of a narrow Si wire,
etched from the top Si layer of a SOI wafer; (b) cross section along the center of the wire;
and (c) during thermal oxidation of the structure, the center of the wire is pinned off from the
top Si layer. The result is a QD in the wire.
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Figure 4.8 Field-induced quantum dots. (a) A schematic drawing of a FEQD in a 2DEG
at the material interface between AlGaAs and GaAs. The ohmic contacts represents any
electric contacts to the QD. (b) Schematic drawing of top gates of a double QD device. By
using several gates, one can set the tunneling barriers (V1 and V5), the interdot tunnel-
ing coupling (V3) of multiple QDs, the number of electrons and energy levels in each QD
(V4). (Reprinted with permission from Ref. 23, © 2001 The American Association for the
Advancement of Science.)

of the 2DEG, its shape is close to a parabola depending on the gates. For a FEQD
having a diameter around 200 nm, the spacing of the energy level is typically23,24

tens of micro eV. These types of QDs are not expected to operate at room tem-
perature because of the shallow potential profile. However, FEQDs are attractive
for low-temperature infrared light detectors because of a very smooth gate-induced
potential and high-quality heterostructure interfaces.

4.2.4 Self-assembled quantum dots

In self-assembly of QDs, one makes use of an island formation in epitaxial growth.
The effect is similar to the formation of water droplets on a well-polished surface.
The islands can either be QDs themselves or induce QDs in a nearby QW. The
major self-assembly growth techniques are vapor phase epitaxy (VPE) and MBE.

Generally, the epitaxial growth proceeds in atomic layer-by-layer mode. How-
ever, islands are formed if there is a large lattice mismatch between the materials
and/or if the surface energy of the deposited material is different from that of the
substrate. The deposited material minimizes its potential energy by forming islands
on the substrate. In the Stranski-Krastanow (S-K) mode, the growth starts in layer-
by-layer mode and proceeds into the island mode after exceeding a critical thick-
ness (see Fig. 4.9). Dislocation-free S-K growth has been observed in, e.g., InAs
on GaAs25 and InP on GaAs.26 Typical island densities are 109 to 1012 cm−2, de-
pending on the growth conditions. Self-organized growth of III–V semiconductors
is currently the most promising fabrication technique of optically active QDs.

4.2.4.1 Quantum dot island

The self-assembled island is a QD itself if the island is embedded in a material
with a larger band gap than that of the island material. An example is provided
by InAs islands in GaAs. Figure 4.10 shows QD islands schematically and a high-
resolution scanning tunneling micrograph of a true InAs island. Very promising
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Figure 4.9 In the S-K mode, the growth of QDs starts in atomic layer-by-layer growth, but
when the thickness of the overgrowth layer exceeds a critical thickness, islands begin to
form.

Figure 4.10 (a) Schematic image of an InAs QD island embedded in GaAs and (b) in situ
STM image, from Ref. 29, of an InAs island.

laser structures have been fabricated using these types of quantum dots by stacking
several island layers on top of each other.27 Typical QD heights range from 5 to
15 nm and widths range from 15 to 25 nm. This means that there are very few elec-
trons and holes per QD. The total charge confinement is a combination of strain,
piezoelectric fields, and material interface effects. For a dot of 13.6 nm height, the
calculated confinement energy of the electron ground state is about 180 meV.28

4.2.4.2 Strain-induced quantum dots

Strain is always present in self-assembled islands as well as in the substrate close to
the island. The magnitude of the strain depends on the lattice constants and elastic
moduli of the materials. If there is a QW close to the quantum dot, the strain field
penetrates it also and affects its energy bands. The island can therefore induce a
lateral carrier confinement in the QW. This results26 in a total QD confinement
in the QW. Typical stressor island heights range from 12 to 18 nm and the QW
thickness is around 10 nm.30 The lateral strain-induced confinement is very smooth
and has the shape of a parabola. The strain-induced electron confinement is about
70 meV deep.31 The resulting QD is pretty large and contains in general tens of
electron-hole pairs. Figure 4.11(a) shows schematically a strain-induced QD and
Fig. 4.11(b) shows a transmission electron micrograph (TEM) of self-assembled
InP islands on GaAs.
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Figure 4.11 (a) A QD induced in an InGaAs QW by an InP island and (b) TEM images of
an InP island on a (001) GaAs substrate (after Georgsson et al.30).

4.3 QD spectroscopy

Even if QDs are called artificial atoms, the rich structure of the atomic spectra is not
easily accessible in QD spectroscopy. Unlike atoms, the QDs are not all identical,
which gives rise to inhomogeneous broadening. When several millions of QDs are
probed simultaneously, the spectral lines become 10 to 100 times broader than the
natural linewidth. The details of optical spectra or electronic states can be seen
only in single QD measurements.

Two microscopic methods developed for single QD spectroscopy are discussed
in this section. In addition, an experimental setup that combines interband (tran-
sition between the valence and conduction bands) optical excitation and intraband
(transitions within the conduction or valence bands) far infrared (FIR) excitation
of QDs is described briefly.

4.3.1 Microphotoluminescence

In a microphotoluminescence (µPL) experiment, the sample is photoexcited with
a laser beam focused by a microscope. The same microscope can also be used to
collect the luminescence in the far field mode, see Fig. 4.12(a). The resolution of
µPL is limited by conventional ray optics to a few microns. Measurements can be
made both by continuous wave (cw) and pulse excitation. In the latter case, either
photon-counting electronics or a streak camera is used for photon detection. µPL
often requires appropriate preprocessing of the QD sample. Etching form pillars
(mesas) with a diameter smaller than the resolution of the microscope reduces the
number of photoexcited QDs so that eventually only a single QD is probed.

A typical µPL of InGaAs self-assembled QDs (SAQDs) is shown in Fig. 4.13.
In this particular measurement, a high resolution is obtained more easily by pre-
processing the mesa than by focusing the excitation or detection. Figure 4.13(a)
shows µPL spectra recorded from mesas of different sizes. In the large mesas, there
are several QD of different sizes, which gives rise to different luminescence ener-
gies. Figure 4.13(b) shows PL from a mesa having only one QD. The intensity of
the excitation increases from bottom to top. The bottom panel shows PL (feature X)

Downloaded from SPIE Digital Library on 18 Jun 2012 to 58.97.130.72. Terms of Use:  http://spiedl.org/terms



120 Fredrik Boxberg and Jukka Tulkki

from a single exciton (a complex of electron and hole coupled by the Coulomb in-
teraction) confined in the ground state of the QD. This is called a ground state exci-
ton, which means that the exciton wave function is governed by the single-electron
and single-hole ground state orbitals. At higher excitation intensities, a biexciton
line (feature X2) appears. It comes from the decay of a bound exciton-exciton pair
into a photon and an exciton. The energy difference between the exciton and biex-
citon lines is the biexciton binding energy �X2 = 3.1 meV. The biexciton binding
energy in bulk GaAs is 0.13 meV. The order-of-magnitude increase of the bind-
ing energy comes from enhanced correlation effects as the many-particle system is
squeezed by the confinement potential.

At still higher excitation intensities another feature X∗2 is found. It is related to
the higher exciton state in which the excited single-particle orbitals dominate the

Figure 4.12 Experimental setup used in the (a) µPL and (b) scanning near-field optical mi-
croscope (SNOM) measurements. Both setups can be used in cw and time-resolved modes.
Generally, either wide-area excitation or detection is used in the measurements. The reso-
lution of the µPL is ∼1 µm and the resolution of the SNOM∼ 100 nm.

(a) (b)

Figure 4.13 µPL spectra33 of InGaAs SAQDs. (a) Spectra measured from mesas having
diameters from 100 to 300 nm. In the larger mesas (diameters 200 and 300 nm), the spec-
trum is a superposition of emission coming from several QDs. (b) µPL from a mesa having
only one QD. The intensity of excitation increases from bottom to the top panels.
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exciton wave function. In general, the appearance of higher energy lines is related
to a phenomenon called Pauli blocking26 common to all fermion systems.

4.3.2 Scanning near-field optical spectroscopy

Another optical microprobe, called the scanning near-field optical microscope
(SNOM) is depicted in Fig. 4.12(b). Note that the fiber aperture is much smaller
than the excitation or emission wavelength. Excitation takes place by an evanes-
cent electromagnetic wave. The resolution enables single QD scanning of unpat-
terned samples. Figure 4.14(a) shows a surface scan (energy integrated PL inten-
sity) of an InGaAs QD sample. Emission from individual QDs is clearly visible. In
Fig. 4.14(b), the energy spectrum of the surface scan has been analyzed and various
excited states recognized for each dot.

As a case study, we finally discuss PL excitaton simultaneously with FIR radi-
ation from a free electron laser (FEL) and with an argon ion laser. The experiment
was done at the University of California Santa Barbara35 (UCSB). SAQDs induced
by self-organized InP islands on top of a near surface GaAs/InGaAs QW are stud-
ied in this experiment. Several millions of QDs were probed simultaneously. The
experimental setup is shown in Fig. 4.15. The sample is pumped simultaneously
with FIR and blue light. The wavelength of the FIR light from the FEL can be
tuned to resonance with the intraband transition of electrons or holes. This gives
rise to intraband resonance absorption or emission of FIR radiation. The recorded
luminescence spectra are shown in Fig. 4.16. The emission from the ground state is
enhanced and the emission from the higher excited states quenched when the FEL
is turned on. The results are in contrast to similar measurements of QW photolu-
minescence where the luminescence is blue-shifted when FEL is turned on. The
experimental result still lacks a theoretical explanation.

(a) (b)

Figure 4.14 A SNOM scan of (a) InGaqAs QD sample from Ref. 34, and (b) analysis of the
energy spectrum used to identify the various excited states in individual QDs.
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Figure 4.15 Photoluminescence excitation by a FIR FEL (tetrahertz radiation) and an
Ar+-ion laser.35 The FIR frequence can be tuned to intraband resonance of electrons and
holes. The PL spectrum is measured with and without FIR pumping.

Figure 4.16 Luminescence spectrum of strain-induced QDs measured with and without
tetrahertz (FIR) radiation.35

4.4 Physics of quantum dots

In a QD, the charge carriers occupy discrete states, just like the electrons of single
atoms. Therefore, QDs are also referred to as artificial atoms. The atomic features
result from 3D confinement. The most important physical principles and tech-
nologically relevant features of QDs include electron states, transitions between
these, the influence of external electromagnetic fields, charge transport, and dy-
namics.
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4.4.1 Quantum dot eigenstates

The carriers confined in QDs interact strongly with the surrounding material. This
interaction depends on the surrounding material and it is distinctively different for
metals and semiconductors. Hence, it is very difficult to formulate a general many-
electron theory of QDs. In electronic QD devices such as single electron transis-
tors (SETs), the electron addition spectrum is clearly dominated by the Coulomb
effect.36 However, in optical devices, charges are added in charge-neutral electron-
hole pairs (excitons), and their energy spectrum is more complex.

Neglecting the coupling with the surrounding material, the electron-hole many-
body Hamiltonian for a QD37 can be written very generally:

Hmb =
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i
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(4.1)

The operators ĉ
†
i (ĉi) and ĥ

†
i (ĥi ) are the electron and hole creation (annihilation)

operators of the state |i〉, respectively. The total energy is, hence, a sum of the
single particle energies Ee

i and Eh
i (electron and hole) and the two-body Coulomb

interactions: the electron-hole (eh), the electron-electron (ee), and the hole-hole
(hh) interactions.

As an example, consider an axial symmetric QD disk with a harmonic lateral
potential. The general single-particle Hamiltonian is

H (e/h) = p2

2m∗(e/h)

+ 1

2
m∗(e/h)ω

2r2+HE +HDM +HZ +Hσ , (4.2)

where m∗(e/h) is the effective mass of an electron or hole, HE is the electric
field term, and HDM + HZ + Hσ are the magnetic terms. The height of the
QD is much smaller than its radius, and we can therefore neglect the verti-
cal dimension in the lowest energy states. The zero-field single-particle energies
are E

(e/h)
i = h̄ω

(e/h)
+ (n + 1/2) + h̄ω

(e/h)
− (m + 1/2) and the angular momenta

L
(e/h)

i =m−n. The eigenstates of Eq. (4.2) are then characterized by the quantum
numbers n ∈ {0, 1, 2, . . .}, m ∈ {0, 1, 2, . . .}, and the spin σ ∈ {↑,↓}. The ground
state (s-band) of the Hamiltonian is doubly degenerate due to the spin while the
first excited state (p-band) is fourfold degenerate. As a consequence, the conduc-
tion (valence) s-band can contain at maximum two electrons (holes) with opposite
spin configuration. These analytic results show that the density of states of a QD
differs remarkably from the parabolic DOS of a bulk semiconductor. Figure 4.2
shows schematically the DOS diagrams of a bulk semiconductor, a QW, and a QD.
The band gap is present in all three DOS diagrams. However, the QD DOS consists
only of sharp peaks determined by Eq. (4.1).
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4.4.2 Electromagnetic fields

In the presence of an electromagnetic field defined by the vector potential A and
the scalar potential φ, the following replacements are required in the Hamiltonian:{

p→ p− qA
H →H + qφ,

(4.3)

where E= ∂A
∂t
−∇φ

B=∇ ×A.

(4.4)

The definition of the electromagnetic field is, however, ambiguous and the exact
gauge can be chosen according to the prevailing situation.38 Furthermore, the spin
splitting is included by the following term:

Hσ = gµ
B
σ ·B, (4.5)

where g is called the g factor (g = 2 for free electrons) and µ
B
= eh̄/(2m0c) is

the Bohr magneton. Generally in a semiconductor, the hole states are Luttinger
spinor states and the exact effect of the magnetic field on them is, in general, more
complicated than on the electron band spin states.

4.4.2.1 Quantum-confined Stark effect

The effect of an electric field on a quantum-confined state is called the quantum-
confined Stark effect. An electric field is accounted for in the Hamiltonian through
the term

HE =−qr ·E. (4.6)

This does not change the degeneracy of the s-states; however, the p-states are split
into two different energy levels. The Stark effect on confined QD states is shown
schematically in Fig. 4.17(a). The effective band gap and the exciton binding en-
ergy are reduced by the electric field. The electric field can either separate the elec-
tron and hole wave functions or bring them closer together. Therefore, the recom-
bination rate Wif is affected, since it is proportional to the wave function overlap.
The quantum-confined Stark effect on the exciton binding energy has been very
nicely demonstrated by several groups.39,40 Findeis et al.39 measured the binding
energy as a function of the field strength by studying a single self-assembled In-
GaAs QD; see Fig. 4.17(b).

4.4.2.2 Magnetic field

In the single-particle Hamiltonian, the magnetic field is included through Eq. (4.3).
In general, a constant magnetic field (B ‖ z) can be accounted for through three
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Figure 4.17 (a) The effect of a electric field on excitons of a QD. The black lines correspond
to E = 0 and the gray lines to E 	= 0. (b) Line position of the neutral QD ground state as
function of the electric field measured in photoluminescence (PL) and photocurrent (PC)
spectroscopy from Ref. 39.

different terms. These are the diamagnetic shift

H
(e/h)
DM =− ω2r2

2m∗(e/h)

, (4.7)

the Zeeman shift

H
(e/h)

Z =− eBL̂z

2m∗(e/h)

, (4.8)

and the spin-splitting Hσ of Eq. (4.5). In Eqs. (4.7) and (4.8), the frequency ω =
eB/2, Lz is the z component of the angular momentum (Lz =mh̄), and m

(e/h)
r is

the relative effective mass of an electron (hole). The Zeeman term and the spin-
splitting do not influence the single-particle orbitals, and can be added directly to
the many-body Hamiltonian.

In a magnetic field perpendicular to the cylindrical QD, the single-particle en-
ergies (omitting the spin-splitting and the band gap energy Eg) are

E
(e/h)
i (B)= h̄


(e/h)
+

(
n+ 1

2

)
+ h̄


(e/h)
−

(
m+ 1

2

)
, (4.9)

with the frequencies 

(e/h)
± = 1/2(

√
ω2

c + 4ω2
0 ± ωc), where ωc = qB/m∗(e/h) is

the cyclotron frequency. Not only the single-particle energies are affected but also
the wave functions. Many of the most important magnetic effects, such as the spin-
splitting, Zeeman effect, diamagnetic shift, and the formation of Landau levels in
high magnetic fields predicted by the single-particle theory have been confirmed
experimentally.33,41
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4.4.3 Photonic properties

The photonic properties of a QD depend completely on the exciton states, which
reflect the geometry and symmetry of the QD. Electrons can lose or gain only
energy quanta, equal to the difference between two exciton states; i.e., only transi-
tions between the discrete eigenstates are allowed due to energy conservation. This
effect is seen in the form of peaks in the QD photoluminescence [see Fig. 4.18(a)].
The peaks are broadened by inhomogeneous broadening, which is due to the size
distribution of a large QD ensemble. Figure 4.18(a) shows the PL of SAQDs after
photoexcitation at different intensities. We see that when the excitation intensity
is small, only the ground states become populated. However, for higher excitation
intensity, the lowest states become filled (Pauli blocking), the PL from these peaks
saturates. As a result, higher excitation intensity leads to occupation of higher states
and accordingly, more PL peaks appear above the ground state energy.

Figure 4.18(b) shows schematically the lowest optical transitions in a single
QD. In the neutral ground state of an intrinsic and unexcited QD, all states below
the band gap are filled with electrons and all states above the band gap are empty
[lower right of Fig. 4.18(b)]. By absorbing a photon, an electron can be excited
across the band gap, thereby leaving behind a hole. We call the electron-hole pair
an exciton X1 [left part of Fig. 4.18(b)]. If there are two electron-hole pairs, we
call it a biexciton X2 [upper right of Fig. 4.18(b)]. Here X1 is fourfold degenerate,
but only two configurations are optically addressable, because a photon transition
from X0 to the other two states would not conserve the total angular momentum.
The optically inactive states are called dark states. The polarization (σ+ or σ−)
and energy (h̄ω) of the absorbed photon defines which of the degenerate states will
be created, i.e., for the transition X1[↑↓] → X2[↑↓↓↑] a σ+ polarized photon

Figure 4.18 (a) Photoluminescence of an ensemble of strain-induced quantum dots at
T = 12 K (Ref. 26). When increasing the excitation intensity, more and more states become
populated starting with the states lowest in energy for low excitation. (b) Optical transitions
in a single QD between the ground state X0, the one exciton state X1, and the biexciton
state X2. (Reprinted with permission from Ref. 26, © 1995 The American Physical Society.)
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with the energy h̄ω = EX −�E will be required [the upper left dotted arrow of
Fig. 4.18(b)]. If the QD is doped or there is an electrically injected electron or hole
in the QD, we call it a charged ground state X−0 or X+0 . The excited state of X−0
(X+0 ) will also be charged, since a photoexcitation does not charge the QD.

The radiative transition rate or the probability that a photon is either emitted or
absorbed by an exciton can be calculated by perturbation theory.42 Fermi’s golden
rule gives the transition probability per time which is equal to the reciprocal of the
radiative life time; thus

1

τr

= 2π

h̄2 |〈f |HED|i〉|2δ(Ei −Ef ± hω), (4.10)

where + and − correspond to photon absorption and emission, respectively; and
hω is the photon energy, which has to be equal to the difference between the energy
of the initial |i〉 and the final excitonic state |f 〉. The first-order electrodynamic
perturbation is

HED = q

m0
A · p, (4.11)

where A is the vector potential of the radiation field, and q = −e is the electron
charge.

In the envelope wave function picture, the overlap integral in Eq. (4.10) be-
comes a sum of two terms; one term proportional to the Kane’s optical transition
matrix element for bulk material and one term the vector product of the envelope
function. The former term dominates in interband transitions and the latter in in-
traband transitions.

4.4.4 Carrier transport

A rich variety of QD transport phenomena has been studied experimentally and the-
oretically. Here we discuss two limiting cases: ballistic transport and the Coulomb
blockade regime. Ballistic transport is observed when the phase of the electron is
preserved while it moves in a conducting channel trough a QD. In this regime, the
conductance is described in the low-bias-voltage limit by the Landauer-Büttiker
formula43 and the conductance is quantized in units of 2e2/h. In ballistic transport
the QD confinement potential gives rise to potential resonances in the transmission.
When QD states are occupied by one or more electrons, interference between the
elastic and inelastic scattering channels gives rise to interference effects known as
Fano profiles.44 Both of these resonance phenomena are well known from atomic
collision physics.

Future applications of QDs in electronic devices are likely to utilize transport
in the Coulomb blockade regime. The energy needed to place an additional elec-
tron on a QD (addition energy) is analogous to the electron affinity of atoms. The
electron addition spectrum is mainly characterized by the Coulomb energy, which
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is much greater than the lowest excitation energies of the electrons on the QD. The
addition energy can be measured with a single electron transistor36,45 (SET).

Figure 4.19 shows the operation principles of an SET. The QD is separated
from two leads by two high-potential barriers, and the energy levels within the
QD can be shifted by a gate electrode. When the SET is biased with a voltage
VB , current starts to flow through the QD if and only if there is an electron state
in between the chemical potentials µL and µR of the left and the right leads. The
electrons tunneling into the dot have energy E =µL and can therefore only occupy
states below µL. Analogously, the tunneling electron at the QD with energy E =
µN+1 can tunnel to the right lead only if µN+1 > µR . This phenomenon is known
as the Coulomb blockade. If a small bias VB is applied to the SET and VG is varied,
clear current peaks appear as a function of VG. Moreover, the peak separation is
directly proportional to the addition energy45

µN+1−µN = e
CG

C

(
V N+1

G − V N
g

)
, (4.12)

where CG is the gate capacitance; and C = CG +CL +CR is the total QD capac-
itance to the gate (CG) and the left (CL) and right leads (CR). Room-temperature
SETs have been fabricated.20 However, the width of the current peaks tends to
increase with temperature and QD size (see also Fig. 4.4).

Two QDs separated by potential barriers between the leads constitute a single
electron pump. This device can be operated like a sluice gate in a water channel.
With a single electron pump, one can control the current very accurately by cycling

Figure 4.19 (a) Current though a QD SET as a function of the gate voltage from Ref. 36.
The current peaks correspond to conducting QD states between the chemical potentials µL
and µR of the left and right conductors, respectively. The inset shows the electrical scheme
of the SET. The energy diagrams for are (b) a nonbiased SET, (c) an SET in the Coulomb
blockade, and (d)–(e) conducting SETs. (Reprinted with permission from Ref. 36, © 1996
The American Physical Society.)
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the gate voltages of the two QDs. In the ideal case, electrons are moved from
one lead to the other, one by one. For more details on double QDs see Ref. 46.
Technological applications of SETs are also discussed in Sec. 4.6.3.

4.4.5 Carrier dynamics

Intraband and interband relaxation of carriers in semiconductor QDs has been stud-
ied using femtosecond-pulse lasers and fast photon-detection electronics.47,48 Fig-
ure 4.20 shows time-resolved PL spectra of a strain-induced SAQD sample47 (see
also Secs. 4.2.4.2 and 4.3.1). The main PL lines originate from transitions from the
ith conduction level to the j th valence level, where i = j for allowed dipole transi-
tions. The 1-1 transition has the longest lifetime, while the luminescence from the
QW and from higher excited states fade out much faster. The carriers relax quickly
from the QW into the QD by Coulomb (carrier-carrier) scattering. Within the QD,
carriers relax to lower energy levels by carrier-carrier and carrier-phonon interac-
tions. For high carrier densities, the carrier-carrier scattering and Auger transitions
always provide a very fast relaxation mechanism. For low carrier densities, the
phonon-assisted relaxation dominates.

There are two phonon relaxation mechanisms; longitudinal optical (LO) and
longitudinal acoustic (LA) phonon scattering. For the electrons the LA relaxation
is a lot slower (τ e

LA ≈ 103 ns) than for holes (τ h
LA ≈ 30 ps), whereas the LO relax-

ation is very slow for both electrons and holes. The LO relaxation is slow because
of the discrete QD DOS since a simultaneous energy and momentum conservation
is impossible for LO relaxation. It is therefore theoretically predicted that the in-
traband relaxation, for low carrier densities, is much slower in QDs than in the cor-
responding bulk semiconductor. This phenomenon is called phonon bottleneck49

and it was verified experimentally by Braskén et al.50

Figure 4.20 (a) Time-resolved PL spectra of strain-induced SAQDs. The black lines are
measurements, while the gray lines are modeled energy level populations. The labels cor-
respond to the initial conduction and final valence states. Reprinted with permission from
Ref. 47. (b) Schematic energy diagram. The dotted arrows show the radiative transitions
of (a) and the solid arrows represents the phonon-related intraband transitions. (Reprinted
with permission from Ref. 47, © 1997 The American Physical Society.)
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4.4.6 Dephasing

The phase of a quantum state evolves with time according to the time-dependent
Schrödinger equation, however, several interactions can destroy the phase informa-
tion of a state. The loss of phase information is called dephasing. The dephasing
time τφ is influenced by both elastic and inelastic collisions. In bulk and QW semi-
conductors, τφ is usually taken to be the intraband relaxation time.

The dephasing time is equal to the polarization relaxation time, which is in-
versely proportional to the homogeneous linewidth � of an optical transition; i.e.,

τφ = 2

�
. (4.13)

The dephasing time defines the time scale on which coherent interaction of light
with medium takes place. Therefore it gives the ultimate time scale for realization
of coherent control in a quantum system.

Elastic collisions can disturb the phase of the carrier wave functions in QDs
without changing the populations of the carrier energy levels. Accordingly, the
spectral lines are broadened. At room temperature, τφ can be of the order of hun-
dreds of femtoseconds for typical QDs. The value is of the same order as for
bulk and QWs. At low temperatures (T < 50 K) dephasing and spectral broad-
ening is usually attributed to acoustic phonons. LO phonons can via a second-
order process change the phase of the QD carriers without changing the carrier
energies.51

Htoon et al. studied the relation between the dephasing time and the relaxation
energy Erel in an ensemble of QDs of different sizes.52 The relaxation energy is
defined as the energy difference between the initial excited state and the final state
after the relaxation. For relaxation from the first excited states with Erel ≈ ELO
the relaxation was very efficient (τφ < 7 ps). However, from the first excited states
with relaxation energies 15 < Erel < 20 meV, the relaxation times were very long
(40 ps < τφ < 90 ps). The relaxation time was still shorter than the radiative re-
laxation time and therefore, a quenching of the ground state PL intensity was not
observed in the experiment. Moreover, higher excited QD states were found to have
relaxation times of τφ ≤ 7 ps. The wave functions of higher excited states overlap
energetically and spatially continuum states of other QDs and the wetting layer.52

Therefore, these states have also more accessible final states, which gives rise to a
short relaxation time.

When the energy separation of the QD carrier states is much different from the
phonon energies, the dephasing time increases. This is due to a smaller accessible
phase space of elastic phonon scattering and the fact that the inelastic scattering
becomes forbidden by energy conservation. Borri et al. report for InAs SAQDs
dephasing times53 as long as τφ = 630 ps. For quantum information applications
(see Sec. 4.6.4) of QDs, the dephasing time has to be at least a few hundred pi-
coseconds.
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4.5 Modeling of atomic and electronic structure

Theory and computational modeling of QDs is required for interpretation of ex-
perimental data and for the development of predictive models of materials and
devices based on QDs. Theories developed for calculation of the electronic and
optical properties of QDs have been very successful in explaining most of the ex-
perimental data. Theoretical models describe QDs either at mesoscopic or atomic
scale.

Mesoscopic-scale models account for changes in the material composition and
material interfaces in terms of effective masses and other material parameters ob-
tained for bulk semiconductors.5 The multiband k · p method is an example of this
approach. The particular advantage of mesoscopic models is that they relate the
modification of the conduction and valence band edges in the QD directly to the
changes in the wave function and thereby to changes in the electronic and optical
properties as the materials or dimensions of a QD are varied.

Atomistic theories such as the pseudopotential method54 and the tight bind-
ing approximation55 also make use of parametric representation of the effective
potential or parametrization of other atomic level electronic quantities. These
methods are computationally more intensive and therefore limited to smaller sys-
tems.

4.5.1 Atomic structure calculations

Most nanometer-size semiconductor and metallic structures include strain fields
that are due to processing of materials (e.g., oxidation of Si) or due to the lattice
mismatch of overgrown materials. The strain induces a modification of the band
edge through the displacement of ion cores and through the piezoelectric effect
(in compound semiconductors). Depending on the origin of the strain, different
theoretical methods are used in the modeling.

Strain fields created during in the oxidation of Si should be calculated from
the general dynamic equations of visco-elastic fluids. The theoretical basis is well
understood, but the values of the necessary material parameters describing the flow
of SiO2 at high oxidation temperatures are not known accurately.56 The strain-
induced deformation of the band edges is expected56 to be very important in Si-
based SET.

The modelling of strain due to lattice mismatch is more straightforward as long
as the lattice remains coherent (strain is not relaxed by dislocation). In this regime,
strain calculations can be made using either continuum elasticity (CE) approxima-
tion or by atomic elasticity (AE) such as the valence force field method.57 Full-
scale device models can be used in the CE approximation. These calculations are
usually made using commercial finite-element software.58 The atomic level models
are computationally more intensive and limited to smaller systems. A comparison
of CE and AE calculations of strain fields in InAs QDs is shown in Fig. 4.21.
The results agree well except at the edges of the structure. The differences in the
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Figure 4.21 Comparison of strain distributions for an InAs QD calculated by AE and CE
approximations: (a) the model and crystal orientation and (b) the diagonal strain components
along the [110] direction. The solid line corresponds to the AE method and the dashed line
to the CE method.57

calculated band structure modification are also small. The accuracy of the calcula-
tion depends more critically on the reliability of the deformation potentials that are
required in calculation of the band edge deformation.

4.5.2 Quantum confinement

The theoretical methods used in electron structure calculation can be classified as
follows. The single-band effective mass model, accounts for the solid only via the
effective mass. This allows for a simple inclusion of the many body effects.59 The
effective mass approximation is reasonably accurate for metallic and compound
semiconductor 2D electron gas structures. Correlation effects have been studied
intensively using this method. Figure 4.22 shows60 as an example the behavior
of a many-electron system in a strong magnetic field. Coulomb interaction leads
to reorganization of the electron density into a Wigner crystal. Theory has also
predicted shell structures in QDs similar to those found in ordinary atoms. The
existence of shell structures have been confirmed by experiments.45

The two-band effective mass model has been recently used by Braskén et al.
to analyze electron-hole pair correlation in strain-induced61 QDs. A strong pair
correlation was found in systems including up to four electron-hole pairs. They
found strong pair correlation up to systems including four electron-hole pairs. Un-
fortunately the ab initia direct diagonalization method used in Ref. 61 becomes
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Figure 4.22 Self-consistent charge densities for a 20-electron GaAs QD for different values
of the magnetic field; B = 2.9 T, B = 3.0 T, and B = 3.5 T. Below: Angular momentum
occupations Pm. (Reprinted with permission from Ref. 60, © 1999 The American Physical
Society.)

computationally very heavy for larger number of particles. Therefore, it is still un-
clear how much of the electron-hole quasi-particle (exciton picture) is left when a
QD confines several tens of electrons and holes.

The multiband methods such as the eight-band k ·p method, are required in the
modelling of valence bands of compound semiconductors. However, many-body
calculations based on this approach become computationally very demanding.62

The pseudopotential method starts from the atomic-level effective potentials and
enables calculation of systems including up to a few millions of atoms.54 The
tight-binding approximation can easily be generalized for electronic structure cal-
culations of QDs. It is computationally heavy, since the calculation includes every
single atom of the structure.55 The pseudopotential method and the tight-binding
method can be used to model the electronic structure down to atomic dimensions.
These models are not limited to the near-band-edge regime as the effective mass
and the related multiband models are. In compound semiconductors, one should in-
clude the Coulomb interaction between electrons and holes (excitonic effect) to ob-
tain a reasonably accurate description of electron states. This part of the correlation
energy can be included also in the pseudopotential and tight-binding calculations.

4.6 QD technology and perspectives

QDs are promising materials for nanotechnology devices. Thus far, biological
markers made of NCQDs are the only commercial QD products available in the

Downloaded from SPIE Digital Library on 18 Jun 2012 to 58.97.130.72. Terms of Use:  http://spiedl.org/terms



134 Fredrik Boxberg and Jukka Tulkki

nanotechnology superstore. However, many more products are coming soon, in-
cluding QD lasers and SETs.

4.6.1 Vertical-cavity surface-emitting QD laser

The vertical-cavity surface-emitting QD laser (QDVCSEL) is being studied ac-
tively in several research laboratories63 and it could be the first commercial QD
device. The room-temperature continuous wave operation has been demonstrated
under laboratory conditions by several groups and there is a strong activity to com-
mercialize the QDVCSEL. Figure 4.23 depicts a typical QDVCSEL. The active
material contains layers of SAQDs sandwiched between super lattices of hetero-
junctions working as distributed Bragg-reflecting (DBR) mirrors. The laser field is
confined in the microcavity, where the stimulated emission takes place in a single-
cavity mode.

QDs are very promising as an active material of a laser64 due to the single-
atom-like discrete energy spectrum. In an ideal QD laser, the narrow photon emis-
sion peaks of the QDs are tailored to match the cavity mode. The QD laser is
mainly motivated by a small threshold current and low power consumption. In ad-
dition, QD lasers can be made nearly chirp-free by appropriate fine-tuning4 of the
DOS. Furthermore, the spectral bandwidth of the output light is small due to the
QD DOS.

4.6.2 Biological labels

A biological label is a marker that can be attached to a biological molecule, e.g.,
a virus or a protein. The molecule can then be traced by radioactive or optical
detection. The aim of QD markers is to replace radioactive markers by optical
ones. Previous optical markers, such as rhodamine 6G (R6G), suffer from very low
luminescence intensity and photobleaching.

Chan and Nie65 have fabricated QD markers, using ZnS covered CdSe QDs
(see also Sec. 4.2.1.1). A polar carboxyl acid group was used to render the
coated QDs water soluble and to couple the QDs covalently to various biomole-
cules. Figure 4.24(a) shows schematically the QD marker attached to a pro-
tein. Figure 4.24(b) shows a fluorescence image of QD immunoglobulin-G (IgG)

Figure 4.23 Typical QDVCEL. The active material contains layers of SAQDs sandwiched
between (DBR) mirrors, which are doped to facilitate the injection of carriers to the InAs
QDs where they recombine radiatively.
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Figure 4.24 (a) Schematic of a QD marker. Right: fluorescence images of IgG labeled
with (b) QDs and (c) antibody-induced agglutination of QDs labeled with IgG. (Reprinted
with permission from Ref. 65, © 1998 American Association for the Advancement of
Science.)

conjugates that were incubated with bovine serum albumin (BSA), whereas in
Fig. 4.24(c) the conjugates are, in addition, subjected to a specific polyclonal an-
tibody. It is clearly seen that the antibodies recognize the IgG and aggregate the
QDs.

Chan and Nie showed the potential of QD markers for labeling biomolecules.
The fluorescence intensity of a single QD is as strong as that of ∼20 R6G mole-
cules and the color of the QD marker can be tuned from blue to red. Moreover,
the QD emission (t1/2 = 960 s) is nearly 100 times as stable as R6G (t1/2 = 10 s)
against photobleaching. However, it is still a major technological challenge to de-
crease the QD size variation. The QD size must be very accurately defined for
detection and distinguishing between several biomolecules simultaneously.

4.6.3 Electron pump

An electron pump (EP) is made of two QDs separated by a thin potential barrier
and connected to one lead each through thick barriers as shown in Fig. 4.25. The
EP consists, thus, of two SETs (see Sec. 4.4.4) in series. Due to a very transparent
interdot barrier, the energy levels and populations of the QDs are strongly coupled.

Figure 4.25 shows the operation principles of an EP. The current through the
QDs is controlled by the gate voltages VG1 and VG2. The left panel of Fig. 4.25
shows the QD population diagram as a function of the gate voltages, where (i, j)

correspond to i electrons in QD1 (= left QD) and j electrons in QD2 (= right QD).
Pumping one electron from the left lead to the right lead through the QDs corre-
sponds to one loop in the population diagram. Figures 4.25(a) through 4.25(d) show
the energy band configuration at six different stages of a pumping loop. At 4.25(a)
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Figure 4.25 Operation principles of an electron pump. Initially both QDs are empty. By
increasing VG1 (a), an electron is enabled to tunnel into QD1 (b). Then VG2 is increased
and VG1 decreased (c), and the electron tunnels farther to QD2 (d). Finally, by increasing
VG2 (e), the electron is made to tunnel into the right lead (f).

both QDs are empty. The electron energy levels of QD1 are lowered by increas-
ing VG1 until an electron tunnels [Fig. 4.25(b)] into QD1 from the left lead. By
raising VG2 and lowering VG1 [Fig. 4.25(c)] the electron tunnels farther into QD2

[Fig. 4.25(d)]. Finally, VG2 is decreased [Fig. 4.25(e)] until the electron tunnels to
the right lead [Fig. 4.25(f)]. One loop is completed. For more detailed information
on double QD systems, see Ref. 46 and the references therein.

The current of an EP is directly related to the frequency of the gate voltages
and there will be a current from left to right even at a zero bias voltage between the
leads when the gate voltages are cycled appropriately. The EP enables extremely
accurate current manipulation by pumping electrons one by one. The device may
enable a new metrological standard for either electrical current or capacitance. The
capacitance standard is based on pumping a known number of electrons on a capac-
itor. Keller et al. showed that this is possible with an error in the electron number66

of 15 ppb.

4.6.4 Applications you should be aware of

QDs are very promising in many optical applications due to the possibility to tailor
the DOS. Therefore it is also possible to fabricate, e.g., infrared (IR) detectors for
low-energy photons. Lee et al. have proposed to use InAs QDs in a GaAs QW
for photoconductivity detection of IR light.67 The measured peak response was as
high as 4.7 A per 1 W of incidence radiation in the photon energy range of 100 to
300 meV.

A QD single-photon source (SPS) is a photon emitter from which photons are
emitted one by one on demand. The driving force of the development of SPS is
quantum computation and cryptography-like applications.68,69 To use photons as
quantum bits (qubits), it is necessary to have a source for single photons with a
predefined energy and polarization. Michler et al.70 have demonstrated a SPS70

using InAs QDs in a GaAs microdisk.
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The QDs could also themselves serve as either classical (storing charge) or
qubit (storing the quantum mechanical state) memories. One possibility of a qubit
memory is to use a double quantum dot (DQD) molecule where the value of the
qubit is based on the state of an exciton in the system.71 For example, if the electron
is in the first QD and the hole in the second QD the qubit value is |0, 1〉. Moreover,
if both particles are in the first QD, the value is |0, 0〉 etc. The qubit value could
also be stored using the electron spin or the state of a single particle in a QD.

Quantum dots could in principle also be used in cellular automata. Amlani
et al.72 presented logical AND and OR gates consisting of a cell, composed of four
QDs connected in a ring by tunnel junctions, and two single-QD electrometers. In
this system, the digital data is encoded in the position of two electrons.
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List of symbols

ε permittivity
ε0 permittivity of vacuum
ε⊥(0), ε‖(0), ε(0) low-frequency permittivities
ε⊥(∞), ε‖(∞), ε(∞) high-frequency permittivities
λ wavelength
µB Bohr magneton
µL, µR , µN chemical potentials
σ z projection of spin
σ spin vector
σ+, σ− light polarization
φ scalar potential
ω, ω+, ω−, ω, 
+, 
− angular frequencies
ωc cyclotron frequency
�X2 energy difference between two exciton states
 e,  h electron and hole wave functions
h̄ Planck constant
c speed of light in vacuum
ĉ

†
i , ĉi electron creation and annihilation operators

e electron charge
〈f |EED|i〉 electric dipole matrix element of the radia-

tive transition from state |i〉 to state |f 〉
g g factor
ĥ

†
i , ĥi hole creation and annihilation operators
〈ij |V̂ee|kl〉 matrix element of the electron-electron

Coulomb interaction
〈ij |V̂eh|kl〉 matrix element of the electron-hole Coulomb

interaction
〈ij |V̂hh|kl〉 matrix element of the hole-hole Coulomb

interaction
kB Boltzmann constant
m0 rest mass of a free electron
mlh, mlh[100], mlh[111] effective light hole masses
mhh, mhh[100], mhh[111] effective heavy hole masses
m⊥, m‖, m∗e effective electron masses
mA

p⊥, mA
p‖, mA

p‖, m[100], m[111], m∗h effective hole masses
me

r , mh
r relative effective masses of an electron and a

hole
p momentum
q charge
r position vector
A vector potential
B magnetic field
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C, CG, CL, CR capacitances
E electric field
EC , EC1 conduction bandedge
EG energy band gap
EV , EH H1 valence bandedge
Ee

i , Eh
i single-particle electron and hole energies

EX exciton binding energy
H Hamiltonian
Hmb many-body Hamiltonian
HE , HDM, HZ, Hσ Hamiltonian terms related to an electromag-

netic field
H e, H h single-electron and single-hole Hamiltonians
Li angular momentum
T temperature
VB bias voltage
VC height of the confining potential barrier
VC , VC1, VC2 gate voltages
Wif recombination rate between states i and f

X, X0, X1, X2, X∗2 exciton states
X+, X− charged exciton states
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5.1 Introduction

The ongoing rapid progress in the synthesis of a variety of different kinds of
nanostructures with fascinating physical properties irreducible to properties of
bulk media symbolizes a fundamental breakthrough in the physics and chem-
istry of condensed matter, significantly extending our knowledge of the nature of
solids and our capabilities to control their properties. Solid state nanostructures are
constitutive and geometric nanononhomogeneities in semiconductor and dielec-
tric mediums. Fullerenes and nanotubes,1–4 semiconductor structures with reduced
dimensionality—quantum wells, wires and dots,5–7 and sculptured thin films8 can
be mentioned as examples. Despite their different physical natures, these objects
share the common property of having extremely small dimensions in one or more
directions. These dimensions are about one or two orders of magnitude bigger than
the characteristic interatomic distance, so that (1) spatial confinement of charge
carriers is fully developed, thereby providing a discrete spectrum of energy states
in one or several directions. Apart from that, the intrinsic spatial nonhomogeneity
of nanostructures dictates (2) nanoscale nonhomogeneity of electromagnetic fields
in them. Whereas the first factor lies in the focus of current research activity in
nanosciences, the role of the second factor is often underestimated. This chapter
stresses complementary characters of these two key factors whose interplay drasti-
cally modifies the electronic and optical properties of nanostructures as compared
to bulk media.

Conventionally, condensed-matter physics is completely associated with ho-
mogeneous media, which are characterized by corresponding dispersion equations
for coupled states of the electromagnetic field and material particles. The solu-
tions of a dispersion equation describe the eigenwaves of the media—the so-called
quasi-particles—which differ from usual (free) particles by the complex behavior
of their dispersion characteristics (energy versus quasi-momentum). The embed-
ding of nanoscale nonhomogeneities in a homogeneous media creates conditions
for diffraction and scattering of quasi-particles and for their mutual transformation,
in the same way as in irregular waveguides.

An important role is played by the resonant interactions between different
modes and the corresponding matching conditions. The first step in the incorpora-
tion of resonant interactions of quasi-particles was made in the theory of quantum
semiconductor superlattices.9 Their high-frequency and optical properties turned
out to be very unusual: negative differential conductivity, propagation of longi-
tudinal (plasma) waves, and so on. The interaction of different modes in nanos-
tructures appears to be even more complex due to the greater variety in inter-
acting modes and the complex 3D geometry of the nonhomogeneities. It is no
wonder that the electronic and electromagnetic properties of nanomaterials ap-
pear to be richer and more diverse. In particular, quantization of the charge-carrier
motion and the pronounced nonhomogeneity of the electromagnetic field inside
and in the vicinity of a nano-object often lead to spatially nonlocal electromag-
netic response, provide peculiar manifestations of instabilities and nonlinearity,
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and make nano-objects attractive for use in quantum networks to store and process
quantum information.10,11 Thus, a new branch of the physics of nanostructures—
nanoelectromagnetics—is currently emerging. It incorporates and modifies tradi-
tional electrodynamical methods and approaches, and it introduces new methods
for new problems.

Milestones in the development of electrodynamics have always been related to
practical problems arising from new ideas relating to the transmission and process-
ing of electromagnetic signals. Advances in quantum electronics led to the devel-
opment of the theory of open quasi-optical resonators.12 The synthesis of high-
quality optical fibers made fiber optic communication feasible, which led to the
development of the theory of open dielectric waveguides (including irregular and
nonlinear waveguides).13,14 Progress in microwave microelectronics stimulated re-
search on the electrodynamics of microstrips and other planar structures.15 Mod-
ern electromagnetic theory is characterized by the development of highly effi-
cient numerical methods simulating diffraction from lossy objects of arbitrary spa-
tial configurations.16 Undoubtedly, electromagnetic simulation of nanostructures
is one of the main research directions for modern electrodynamics.

Among a variety of nanostructures, research on the properties of carbon nan-
otubes (CNs)—quasi-1D carbon macromolecules—has continued to grow un-
abated for more than a decade.1–4 In particular, the modern quantum theory of
quasi-1D conductors predicts monomolecular electronic devices whose opera-
tion relies on quantum charge-transport processes.17,18 CN-based transistors,19

tunneling diodes based on doped CN junctions,20 and Schottky diodes in CNs
heterojunctions21,22 are actively studied. One more important attribute of CNs is
pronounced field-electron emission, a property that makes CNs attractive for cath-
odes in electronic devices.4

Recent progress in the synthesis of sheets of nanoscale 3D confined narrow-gap
insertions in a host semiconductor—the so-called quantum dots (QDs)—enables
realization of the idea23 of using structures with size quantization of charge car-
riers as active media for double-heterostructure lasers. It was predicted about two
decades ago that lasers based on QDs would show radically changed character-
istics as compared to conventional quantum-well lasers.24,25 A large body of re-
sults on physical properties of QDs and their utilization for QD laser design is
now available.6,26 Another important class of problems attracting much attention
in the semiconductor community concerns the electromagnetics of microcavities
exposed to classical or quantum light; see Ref. 27 and the references therein. In that
connection, the applications of semiconductor QDs in cavity quantum electrody-
namics28–30 (QED) and as potential quantum-light emitters31–34 are being actively
discussed.

This chapter focuses on some problems of the electromagnetics of isolated CNs
and QDs, thus introducing the reader to nanoelectromagnetics of low-dimensional
nanostructures. Both microscopic and macroscopic models can be utilized to study
electromagnetic response properties of nanostructures. The macroscopic approach
implies their phenomenological description by means of elctrodynamical consti-
tutive relations. In that case, well-developed traditional methods and approaches
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originating from the microwave and antenna theory12–16,35–38 can easily be ex-
tended to boundary-value problems of nanostructures. In contrast, microscopic ap-
proaches do not use a priori constitutive relations. For instance, electrodynamics
is supplemented with quantum-mechanical modeling of charge carriers transport
on the basis of reasonable field approximations. Such a microscopic approach is
essentially more complicated but more consistent in comparison with the macro-
scopic phenomenological description.

The remainder of this chapter is based on a series of works that cover prob-
lems of linear electrodynamics of CNs,39–44 nonlinear transport in and nonlinear
optics of CNs,44–49 QED of CNs,44,50 and classical and quantum optics of QDs
with the local fields accounted for.51–59 Only isolated CNs and QDs are consid-
ered, with collective effects inherent in macroscopic ensembles of such particles
being well beyond this chapter’s scope. Note that the electromagnetic response
theory of individual nano-objects supplemented with the traditional homogeniza-
tion techniques60 can be successfully applied to nanocomposite materials. Also,
the material presented here can be extended to cover the constitutive modeling re-
quired for nanoelectromagnetics of microcavities.

5.2 Electron transport in carbon nanotube

5.2.1 Dispersion properties of π -electrons

Surface carbon structures, i.e., fullerenes and nanotubes, appear as results of certain
deformations of a planar monoatomic graphite layer (graphene), whose crystalline
structure is illustrated in Fig. 5.1. In fullerenes, discovered61 in 1985, the graphene
plane is transformed into a closed sphere or spheroid containing regular hexagons
(their number depends on the fullerene dimension) and 12 regular pentagons. In a
CN, originally synthesized62 in 1991, the graphite surface is transformed into an
extended hollow cylindrical structure; see Fig. 5.2. Thus, carbon atoms in CNs are

Figure 5.1 Configuration of the graphene crystalline lattice R=ma1 + na2.
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situated regularly on a helical line with a certain wrapping angle (geometric chiral
angle).

Let R be the relative position vector between two sites on the honeycomb lat-
tice of the graphene plane, as shown in Fig. 5.1. In terms of the lattice basic vectors
a1 and a2, R=ma1+na2, where m and n are integers. Thus, the geometric config-
uration of CNs can be classified by the dual index (m, n)—with (m, 0) for zigzag
CNs, (m, m) for armchair CNs, and 0 < n 	=m for chiral CNs. The cross-sectional
radius of a CN and its geometric chiral angle are given by4

RCN =
√

3

2π
b

√
m2 +mn+ n2, θCN = tan−1

( √
3n

2m+ n

)
, (5.1)

where b= 0.142 nm is the C—C bond length in graphene. Typically, CNs are 0.1 to
10 µm in length and their cross-sectional radius varies within the range 1 to 10 nm,
while 0≤ θCN ≤ 30 deg. Recently, the synthesis of CNs of extremely small radius
of ∼ 0.4 nm has been reported.63 In this chapter, a 2D Cartesian coordinate system
(x, y) is used for graphene and the circular cylindrical coordinate system (ρ, ϕ, z)

for any CN, with the CN axis parallel to the z axis. The x axis is oriented along a
hexagonal side. The transition from graphene to a zigzag CN is established by the
substitution {x→ z, y→ φ}, while the transition from graphene to an armchair
CN requires the substitution {y→ z, x→ φ}. Gaussian units are used throughout,
in conformity with CN literature.

Both single-wall and multiwall nanotubes have been synthesized.4 The multi-
layer nanotubes have the form of several coaxial cylinders (the distance between
the layers is 0.34 nm, while the number of cylinders is ordinarily 10 to 12). Al-
though the theory presented here has been developed for a single-wall CN, it should
be noted that a multiwall CN can be treated as an ensemble of single-wall nan-
otubes with a broad diameter distribution.41 Along with CNs, nanotubes doped
with nitrogen and boron are also known.4

The electromagnetic processes in any media essentially depend on its electronic
properties. The properties of electrons in CNs and electron transfer processes in
them have been studied in detail, both theoretically and experimentally. The the-
oretical analysis is usually confined to dynamics of π -electrons within the tight-
binding approximation,64,65 which allows for interaction between only three ad-

Figure 5.2 Model of an open-ended carbon nanotube. The wavevector k shows the direc-
tion of propagation of the cylindrical wave in the analysis of edge effects in nanotubes.
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jacent atoms of the hexagonal structure. In the framework of this model, electron
properties of graphene are described by the well-known dispersion law66

Ec,v(p)=±γ0

√
1+ 4 cos(apx) cos

(
a√
3

py

)
+ 4 cos2

(
a√
3

py

)
, (5.2)

where γ0 ≈ 2.7 eV is the overlapping integral, a = 3b/2h̄, h̄ is the Planck constant,
and px,y are the projections of the quasi-momentum. The upper and lower signs
in Eq. (5.2) refer to the conduction and valence bands, marked by the indices c

and v, respectively. The range of definition of the quasi-momentum p (the first
Brillouin zone) spans the hexagons shown in Fig. 5.3. The vertices are the Fermi
points where E = 0, which is indicative of the absence of the forbidden zone for
π -electrons in graphene. Note that graphene is a semimetal: it lacks a band gap,
but the density of states at the Fermi level is zero.

The dispersion properties of nanotubes essentially differ from the dispersion
properties of graphene because of the difference in topology. In the cylindrical
structure, electrons residing at the origin and at the point R=ma1+ na2 are iden-
tical, which quantizes the transverse quasi-momentum component:

pϕ = h̄s/RCN, s = 1, 2, . . . , m. (5.3)

The axial component of quasi-momentum pz remains continuous. The relation-
ships in Eqs. (5.2) and (5.3) and the substitution {px → pz, py → pϕ} yield the
dispersion law for the zigzag nanotubes as follows:

Ec,v(pz, s)=±γ0

√
1+ 4 cos (apz) cos

(
πs

m

)
+ 4 cos2

(
πs

m

)
. (5.4)

Figure 5.3 Configuration of the first Brillouin zone for (a) zigzag and (b) armchair CNs.
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To evaluate the electron dispersion relation for armchair CNs from (5.2), the sub-
stitution {px → pϕ, py → pz} must be carried out; accordingly,

Ec,v(pz, s)=±γ0

√
1+ 4 cos

(
πs

m

)
cos

(
a√
3

pz

)
+ 4 cos2

(
a√
3

pz

)
. (5.5)

As follows from Eqs. (5.4) and (5.5), the first Brillouin zone in a CN is not a
hexagon. Rather, it a set of 1D zones: rectilinear segments inside the hexagon. De-
pending on whether or not these lines pass through the hexagon’s vertexes (Fermi
points), the band gap in the electron spectrum either disappears or appears. Un-
like graphene, the density of states at the Fermi level in 1D zones is nonzero. Ac-
cordingly, a nanotube is either metallic or semiconducting. As can be seen from
Fig. 5.3, armchair CNs exhibit metallic conductivity at any m; whereas zigzag
CNs behave as a metal only for m = 3q , where q is an integer. For a metal-
lic CN of a small radius and for a CN of a very large radius (m→∞), the
approximate dispersion law for π -electrons, Ec,v(p) = ±vF |p − pF |, has been
proposed;67 here, vF = aγ0 is the velocity of π -electrons at the Fermi level and pF

is a constant vector defined as the quasi-momentum at the Fermi level. In both
cases, the foregoing approximate dispersion law is applicable, because the re-
gions near the Fermi points give the maximum contribution to the conductiv-
ity.

When a CN is placed in either an axial68 or a transverse69 magnetostatic
field, the type of its conductivity changes. Due to this feature, the conductiv-
ity can be controlled over a wide range by varying the magnetization vector.
An important property of chiral nanotubes is that a voltage applied across the
ends produces an azimuthal current component.45,70–72 As a result, the trajectory
of the current in the CN is helical, although graphene has isotropic conductiv-
ity.

5.2.2 Bloch equation for π -electrons

The theory of optical properties of CNs applied in the present chapter involves a
direct solution of the quantum-mechanical equations of motion for π -electrons.
Consider an infinitely long rectilinear single-wall CN oriented along the z axis
and excited by the component of electromagnetic field polarized along this axis:
E(r, t)= ezEz(r, t). Let the field be incident normally to the CN axis. In the tight-
binding approximation, the motion of electrons in the CN crystalline lattice poten-
tial W(r) is described by the Schrödinger equation

ih̄
∂ 

∂t
=− h̄2

2m0
� + [

W(r)− e(Er)
]
 , (5.6)
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where e and m0 are the electron charge and mass, respectively. The solution can be
represented by the Bloch wave expansion

 =
∑

q

Cq q(p, r), (5.7)

where the index q stands for the collection of quantum numbers characterizing
states of π -electrons with a given quasi-momentum. In the framework of the two-
band model, the index takes the values either v or c. Amplitudes uq(r) of the Bloch
functions

 q(p, r)= h̄−1/2 exp(ipr/h̄)uq(r) (5.8)

are periodic with respect to an arbitrary lattice vector R. The expansion of Eq. (5.7)
does not contain states of the continuous spectrum; consequently, consideration is
restricted to the effects below the ionization threshold. The coefficients Cq satisfy
the equation73

ih̄
∂Cq

∂t
= EqCq − ih̄eEz

∂Cq

∂pz

− eEz

∑
q ′

Cq ′Rqq ′, (5.9)

where

Rqq ′ = ih̄

2

∞∫
0

rdr

∫
Suc

(
u∗q

∂uq ′

∂pz

− ∂u∗q
∂pz

uq ′
)

dS, (5.10)

and Suc is the honeycomb cell on the CN surface. After using the standard represen-
tation of the density matrix elements ρqq ′ = CqC∗

q ′ , Eq. (5.9) can be transformed

to the following system of equations:49

∂ρvv

∂t
+ eEz

∂ρvv

∂pz

=− i

h̄
eEz

(
R∗vcρvc −Rvcρcv

)
,

∂ρvc

∂t
+ eEz

∂ρvc

∂pz

=− i

h̄
eEz

[
Rvc(2ρvv − 1)−�Rρvc

]− iωvcρvc,

ρvv + ρcc = 1.

(5.11)

Here, ωvc = (Ec − Ev)/h̄ is the frequency of the transition. The transition fre-
quency as well as the matrix elements Rvc and �R = Rvv − Rcc are evaluated in
the tight-binding approximation, taking into account transverse quantization of the
charge carriers’ motion and the hexagonal structure of the CN crystalline lattice.
For zigzag CNs, the matrix element

Rvc(pz,s)=− bγ 2
0

2E2
c (pz, s)

[
1+ cos(apz) cos

(
πs

m

)
− 2 cos2

(
πs

m

)]
. (5.12)
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The analogous expression for armchair (m, m) CNs is as follows:

Rvc(pz,s)=−
√

3bγ 2
0

2E2
c (pz, s)

sin

(
a√
3

pz

)
sin

(
πs

m

)
. (5.13)

For CNs of both types, the condition �R/Rvc � 1 can easily be derived, which
enables us to reject the term �R in Eq. (5.11). The solution of Eq. (5.11) enables
evaluation of the surface density of the induced axial current as follows:

jz(t)= 2eγ0

(πh̄)2RCN

m∑
s=1

∫ [
∂Ec

∂pz

ρvv + EcRvcIm[ρvv]
]

dpz. (5.14)

Equations (5.11), supplemented with Eqs. (5.4), (5.5), (5.12), and (5.13), con-
stitute a basic system for the analysis of the optical properties of CNs. Generally,
its solution is nonlinear with respect to Ez. In the linear regime, the system of
Eq. (5.11) can be linearized. In the case of weak nonlinearity, optical properties of
CNs are derived from Eq. (5.11) using a polynomial expansion in Ez; so that the
nonlinear properties of CNs are characterized by nonlinear optical susceptibilities
of different orders. Of course, for the high-intensity external fields of subpicosec-
ond optical pulses (>1010 W/cm2), the formalism of nonlinear susceptibilities be-
comes inefficient. In Ref. 49, the system of Eq. (5.11) was solved numerically in
the time domain. The method of characteristics74 was used for integration of the
system. Initial distribution of electrons in zones was specified by the Fermi equilib-
rium distribution function at room temperature and the periodicity on the Brillouin
zone boundaries was exploited.

Generally, relaxation terms describing inelastic scattering of π -electrons prop-
agating in CNs should be introduced in Eq. (5.11). This can be done either
phenomenologically44 (e.g., in the framework of the relaxation-time approxima-
tion9) or on the basis of microscopic theory of electron-phonon interactions.69,75

An alternative approach is to solve Eq. (5.11) without relaxation terms and then
introduce corresponding corrections into the final results.

5.3 Linear electrodynamics of carbon nanotubes

5.3.1 Dynamic conductivity

As pointed out in the previous section, to obtain the linear optical response of a CN,
the linearized Eqs. (5.11) must be solved, and the surface current density Eq. (5.14)
must be evaluated. In the linear regime, the Bloch equations can be solved in the
weak-field limit by the Fourier transform method. If we neglect spatial dispersion,
the optical response proves to be spatially local. In that case, for Fourier amplitudes
of the axial current and field, the relation44

jz(ω)= σzz(ω)Ez(ω) (5.15)

Downloaded from SPIE Digital Library on 18 Jun 2012 to 58.97.130.72. Terms of Use:  http://spiedl.org/terms



154 Sergey A. Maksimenko and Gregory Ya. Slepyan

is obtained, where

σzz(ω)=− ie2ω

π2h̄RCN

{
1

(ω+ i0)2

m∑
s=1

∫
1stBZ

∂Fc

∂pz

∂Ec

∂pz

dpz

− 2
m∑

s=1

∫
1stBZ

Ec|Rvc|2 Fc − Fv

h̄2(ω+ i0)2 − 4E2
c

dpz

}
(5.16)

is the axial conductivity of the CN. In this expression, the integration is performed
over the first Brillouin zone (BZ),

Fc,v(pz, s)= 1

1+ exp[Ec,v(pz, s)−µch/kBT ] (5.17)

is the equilibrium Fermi distribution function, T is the temperature, and kB is the
Boltzmann constant. The chemical potential is denoted by µch; in graphite and
undoped CNs, µch = 0.

The CN conductivity law [Eq. (5.15)] is analogous to constitutive relations for
3D conducting media in classical electrodynamics. However, there is a significant
distinction: as in classical electrodynamics, the derivation of Eq. (5.16) employed
macroscopic spatial averaging, but a surface element was used instead of an infin-
itesimally small volume. Thus, jz(ω) is the surface current density.

The relaxation effect is phenomenologically incorporated in Eq. (5.16) by sub-
stituting (ω + i0)2 → ω(ω + i/τ ). The mean time of the electronic free pass in
nanotubes (relaxation time) τ is estimated76 by τ = 3 × 10−13 s. The first term
on the right side of Eq. (5.16) describes the intraband motion of π -electrons, and
corresponds to the first term in Eq. (5.14). The second term on the right side of
Eq. (5.16) describes direct transitions between the valence and the conductivity
bands, and corresponds to the second term in Eq. (5.14). Note that the contribu-
tion of interband transitions is negligible in the frequency region determined by
the condition

ω < ω� =
{

2vF /RCN, for metallic CNs,

2vF /3RCN, for semiconducting CNs.
(5.18)

For typical nanotubes, the low-frequency edge of the optical transition band ωl falls
in the infrared regime. Figure 5.4 illustrates the behavior of the axial conductivity
at frequencies of optical transitions.

Figure 5.5 shows σzz(ω) for zigzag CNs as a function of the radius (index m).
For armchair CNs, this function is monotonic, because those CNs always exhibit
metallic conductivity. Irrespective of the nanotube type, its conductivity tends66 to
the same limit equal to the graphene conductivity as m→∞.

The foregoing results demonstrate that a rigorous microscopic transport the-
ory must be utilized for elaboration of the electrodynamics of CNs: constitutive
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Figure 5.4 Frequency dependence of the total axial conductivity σzz(ω) of the (9, 0) metallic
zigzag CN; τ = 3× 10−12 s and T = 295 K. The axial conductivity is normalized by e2/2πh̄.
(Reprinted with permission from Ref. 41, © 1999 The American Physical Society.)

Figure 5.5 Normalized semiclassical conductivity σzz(ω)/σ∞ for zigzag CNs as a function
of m (and therefore of the cross-sectional radius RCN); σ∞ = limm→∞ σzz, τ = 3× 10−12 s,
and T = 264 K. (Reprinted with permission from Ref. 4, © 1999 The American Physical
Society.)

relations for CNs cannot be properly introduced without such a theory. In particu-
lar, phenomenological models proposed in Refs. 77 to 79 prove to be unsatisfactory
since they assume the CN conductivity to be identical to the graphene conductivity.
Figure 5.4 shows that such an approximation is adequate only for large-radius CNs
(m > 100), where specific properties of CNs as low-dimensional structures do not
manifest themselves since the role of transverse quantization becomes negligible.
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5.3.2 Effective boundary conditions

Using the model of axial conductivity introduced in the previous section, we can
now impose effective boundary conditions (EBCs) on the nanotube surface. This
approach provides a general method for solving a wide range of problems of
nanotube electrodynamics. The basic idea is to replace the periodic structure by
a smooth one-sided surface on which appropriate EBCs for the electromagnetic
field are imposed. These EBCs are chosen in such a manner that the spatial struc-
ture of the electromagnetic field induced by the effective current that flows on the
smooth homogeneous surface and the spatial structure of the electromagnetic field
generated by the real current in the lattice are identical at a certain distance from
the surface. The lattice parameters are included in the so-called EBC coefficients.

The EBCs are obtained as a result of the spatial averaging of macroscopic fields
over a physically infinitesimal element of the cylindrical surface. The condition that
the tangential electric field component and the axial component of the magnetic
field be continuous on the CN surface yields

Eϕ,z|ρ=RCN+0 −Eϕ,z|ρ=RCN−0 = 0, Hz|ρ=RCN+0 −Hz|ρ=RCN−0 = 0. (5.19)

The next condition follows from the equation for the CN axial conductivity.41,42

Its derivation utilizes the relation between the surface current density jz(ω) and
the discontinuity of the magnetic field component Hϕ at the CN surface; i.e.,

Hϕ |ρ=RCN+0 −Hϕ|ρ=RCN−0 = 4π

c
σzz(ω)Ez|ρ=RCN, (5.20)

where c is the speed of light in the vacuum.
In the regime of optical transitions, the electromagnetic response of a CN is sig-

nificantly influenced by the spatial dispersion of π -electrons provided, in particular
by the Coulomb screening effect. A theory of this effect in quasi-1D structures is
available.80

Spatial dispersion results in the CN conductivity σzz becoming a 1D inte-
gral operator. As an example, consider the propagation in the CN along its axis
of a traveling wave with nonzero z directed component of the electric field:
Ez(r, t) = Re{E0

z exp[i(hz − ωt)]}. The plane wave propagation considered in
Sec. 5.2.2 corresponds to the particular case h= 0. For such a traveling wave, the
conductivity acquires a dependence on the wave number h; i.e., σzz = σzz(h, ω).
A concise expression for σzz(h, ω) is available.42 Spatial dispersion is incor-
porated into EBCs by the change σzz(ω)→ σzz(ω)[1 + γ (ω)∂2/∂z2]−1, where
γ (ω)= l0/[k(1+ i/ωτ )]2, k = ω/c is the free-space wave number, and the coeffi-
cient

l0 = k2

2σzz(0, ω)

∂2σzz(h, ω)

∂h2

∣∣∣∣
h=0

(
1+ i

ωτ

)2

(5.21)
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characterizes the contribution of the spatial field nonhomogeneity.40–42 After tak-
ing the foregoing into account, the EBC of Eq. (5.20) changes to

�(ω)
(
Hϕ |ρ=RCN+0 −Hϕ |ρ=RCN−0

)= 4π

c
σzz(ω)Ez|ρ=RCN (5.22)

while Eq. (5.19) remain valid; here �(ω) = 1+ γ (ω)∂2/∂z2. The estimates l0 ≈
(vF /c)2 for metallic nanotubes of a small radius, and l0 ≈ 3(vF /c)2/4 for any
nanotube of a large radius, are available.41,42 For metallic CNs, calculations yield
l0 ∼ 10−5.

The conditions of Eqs. (5.19) and (5.20), or Eqs. (5.19) and (5.22), constitute
a complete system of EBCs for the electromagnetic field on the CN surface. They
are analogous to the Weinstein–Sivov boundary condition38 for grid structures and
small-period grids in the microwave literature.

5.3.3 Surface electromagnetic waves

To exemplify the EBC method, let us examine the propagation of surface waves
along an isolated infinite CN in free space, assuming that the nanotube exhibits
axial conductivity. The eigenwaves under study satisfy the homogeneous Maxwell
equations, boundary conditions Eqs. (5.19) and (5.20), and the condition that there
are no exterior current sources at infinity. The problem formulated thus is similar
to the eigenwave problem for microwave slow-wave helical structures and can be
solved by the field-matching technique.14,16,36

The entire space is divided into two cylindrical partial domains—the domains
inside and outside the tube. The electromagnetic field is represented by the scalar
Hertz potential35 !e. Using the Maxwell equations and the radiation conditions in
the limit ρ→∞, we obtain

!e =A exp(ihz+ ilϕ)

{
Il(κρ)Kl(κRCN), ρ < RCN,

Il(κRCN)Kl(κρ), ρ > RCN,
(5.23)

where A is an arbitrary constant; κ =√h2 − k2; while Il and Kl are the modified
cylindrical Bessel functions of the first and second kinds, respectively. The repre-
sentation of Eq. (5.23) directly satisfies the EBCs of Eq. (5.19). Using an expres-
sion for the Wronskian of the modified Bessel functions, the dispersion relation for
the surface wave in a CN is obtained:(

κ

k

)2

Il(κRCN)Kl(κRCN)= ic

4πkRCNσzz

[
1− 1+ (κ/k)2

(1+ i/ωτ )2
l0

]
. (5.24)

Figure 5.6 shows the complex-valued slow-wave coefficient β = k/h for the
axially symmetric (l = 0) surface wave in the metallic (9, 0) CN obtained numer-
ically from Eq. (5.24). Axially asymmetric modes are discussed elsewhere.41 At
low frequencies (ω < 1/τ ), when kb < 10−7 (where b is the C C bond length),
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Figure 5.6 Frequency dependence of the complex-valued slow-wave coefficient β for the
axially symmetric surface wave in a (9, 0) metallic zigzag CN. Input parameters are the same
as for Fig. 5.4; 1, Re[β]; and 2, −Re[β]/Im[β]. (Reprinted with permission from Ref. 41,
© 1999 The American Physical Society.)

the nanotube demonstrates strong attenuation: Im[β] ∼ Re[β]. One can thus con-
clude that the nanotubes are of no interest as surface waveguides at low frequencies.
It is important that, for nanotubes of typical lengths of lCN ∼ 1 µm, lCNRe[h] � 1.
This means that the CNs transmit low-frequency electric signals similar to elec-
tric circuits without wave effects. Unlike the low-frequency limit, in the infrared
regime (10−5 < kb < 10−3 or 3× 1012 s−1 < ω/2π < 3× 1014 s−1), nanotubes
permit the propagation of slowly decaying surface waves. Analysis has shown that,
in the infrared regime, the slow-wave coefficient Re[β] of semiconducting CNs is
1/10 that of the metallic CNs, while the respective values of Im[β] are compa-
rable. Therefore, attenuation in semiconducting CNs is significantly higher than
in the metallic CNs. Moreover, as semiconducting CNs are characterized by high
slow-wave coefficients (2× 10−3 < Re[β]< 2× 10−2), the electromagnetic field
in such CNs is tightly localized near the surface.

Note also that the slow-wave coefficient Re[β] and the phase velocity vph =
Re[ω/h] are almost frequency independent. Therefore, a wave packet will prop-
agate in the nanotube without significant distortions, which is very important for
possible application in nanoelectronics. This demonstrates that CNs can serve in
the infrared regime as dispersionless surface-wave nanowaveguides, which may
become high-efficiency nanoelectronic elements.

Practical application of CNs as waveguiding structures and antenna elements
requires the generation of different types of irregularities in CNs like those that
are formed in ordinary macroscopic waveguides in the microwave range. There
are several types of irregularities observed experimentally, e.g., junction of two
CNs with different diameters,81 T junctions formed by fusing two CNs of dif-
ferent diameters and chiralities perpendicular to each other,82 differently con-
figured Y junctions,82–84 crossed CN junctions,85 and setup of two CNs con-
tacted to a gapped superconductor.86 Note that the embedding of irregularities in
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a macroscopic waveguide does not change its electronic properties, but manifests
itself in the scattering of electromagnetic waves and mode transformation. In con-
trast, irregularities in a nanowaveguide may drastically change the conductivity’s
character—which can be taken into account by means of corresponding transfor-
mation of EBCs [Eqs. (5.19) and (5.20) or Eqs. (5.19) and (5.22), equivalently] in
the region adjoining the irregularity.

5.3.4 Edge effects

There are two alternative mechanisms for the manifestation of edge effects in CNs:
electronic and electromagnetic. The first mechanism is provided by the modifica-
tion of the CN electronic structure entailed by an edge; in particular, new electronic
states are localized in the vicinity of an edge.87 The second mechanism is related
to electromagnetic wave diffraction at a CN edge. Here consideration is focused on
the electromagnetic diffraction edge effects, which are similar to those that occur
in wire antennas.35 Indeed, at optical frequencies, the length and radius of real CNs
satisfy the conditions kRCN� 1 and klCN ∼ 1. These are the same conditions that
characterize microwave wire antennas. This analogy not only indicates the impor-
tance of studying resonances associated with the finite length of nanotubes, but also
indicates the analytical method: the problem of surface wave diffraction by an open
end of the semi-infinite nanotube is solved by the Wiener–Hopf technique.35 A fi-
nite nanotube can be analyzed with the help of the modified factorization method
or by using the approximate solutions of integral equations for induced current as
is done in antenna theory.

Consider the diffraction of an E-polarized cylindrical electromagnetic wave by
an open end of a nanotube. Let the wave travel at the angle θ0 to the tubule axis
(see Fig. 5.2). The scalar Hertz potential of this wave is given by

!(inc)
e =− i

k sin2 θ0
H

(µ)
l (kρ sin θ0) exp(ikz cos θ0 + ilϕ), (5.25)

where H
(µ)
l are the cylindrical Hankel functions of the first and second kinds (µ=

1 or 2). The scalar Hertz potential of the scattered field satisfies the Helmholtz
equation and is related to the electromagnetic field in the standard manner.35 This
enables the use of EBC in Eqs. (5.19) and (5.22) to derive boundary conditions
for the potential.43,44 These conditions should be supplemented by the radiation
conditions as well as the edge condition (which requires that no source is present
on a sharp edge). The edge condition implies that the field energy in any finite
spatial region containing the edge is finite.

The boundary-value problem formulated can be solved by the Wiener–Hopf
technique.43 For convenience, the space is assumed to be filled by a lossy media in
which k = k′ + ik′′, and the limit k′′ → 0 is taken in the final expressions. Appli-
cation of the Jones approach36 leads to a functional equation of the Wiener–Hopf
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type for two unknown functions J+(α) and Y−(RCN, α) in the band enclosing the
real axis in the complex α plane; i.e.,

J+(α)G(α)RCN = Y−(RCN, α)− "̃(α)

ξ(ω)κ2
, (5.26)

where κ = √α2− k2. The subscripts ± stand for functions that are analytical in
the upper and lower half planes, respectively, while

G(α)=Kl(κRCN)Il(κRCN)− 1− l0α2/k2

RCNξ(ω)κ2
, "̃(α)= kH

(µ)
l (kRCN sin θ0)

α+ k cosθ0
.

(5.27)
The function "̃(α) is the Fourier transform of the function "(ϕ, z) exp(−ilϕ),
where

"(ϕ, z)= ξ(ω)k2 sin2 θ0!(inc)
e (RCN, ϕ, z), ξ(ω)=−4πiσzz(ω)/ck. (5.28)

The main idea of the technique used to solve Eq. (5.26) consists of factoriza-
tion and decomposition of known functions that enter Eq. (5.26) to obtain35 two
independent expressions for J+(α) and Y−(RCN, α). As a result, the general solu-
tion for the diffracted field is expressed by quadratures. The function G(α) can be
factorized as36

ln
[
G±(α)

√
α± k

]= 1

2πi

∫ +∞±α0

−∞±α0

ln
[√

α′2− k2 G(α′)
] dα′

α′ ± α
, (5.29)

where α0 is a real number such that 0 < α0 < Im(k). The factor
√

α′2− k2 provides
the asymptotic behavior of the integrand necessary for the convergence of the in-
tegral. The integral in Eq. (5.29) cannot be analytically evaluated; therefore, the
factorization has to be performed numerically. By following the standard Wiener–
Hopf procedure,36 we arrive at the following formula for the z component of the
field outside the tubule:

Ez(ρ, ϕ, z)= ηl(θ0)

2πik
exp(ilϕ)

∫
C

exp(−iαz)
(α − k)Kl(κρ)Il(κRCN)

(α+ k cosθ0)G+(α)
dα. (5.30)

Here,

ηl(θ0)= H
(µ)
l (kRCN sin θ0)

G+(k cosθ0)(1+ cosθ0)
, (5.31)

and the integration path C is shown in Fig. 5.7 with the solid line. The field inside
the tubule is obtained by interchanging ρ and RCN in Eq. (5.30). The remaining
components of E and H can be obtained in a similar manner.
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Figure 5.7 Contour C in the complex α-plane. The dashed lines show the branch cuts.43

Equation (5.30) is an exact analytical expression for the field scattered by a
semi-infinite CN; and it holds true both near and far from the nanotube. In the near
zone, the convergence of integrals in Eq. (5.30) is very slow and one should be
careful when integrating numerically.

In the far zone, the integrals in Eq. (5.30) can be estimated asymptotically by
the saddle-point method. The standard procedure results in

Ez ∼ F (θ, θ0) sin θ
exp{ik√

ρ2 + z2}
k

√
ρ2 + z2

, (5.32)

where

F (θ, θ0)= ηl(θ0)
Jl(kRCN sin θ)

G−(k cosθ)(cos θ + cosθ0)
cot

(
θ

2

)
exp

(
−i

π

4

)
, (5.33)

and θ = π/2+ arctan(z/ρ). The function F (θ, θ0) is conventionally referred to as
the edge scattering pattern. The total scattering pattern also contains components
associated with surface polaritons.43

To illustrate the foregoing results, the far-zone scattered power density Pl(θ)∼
|Fl(θ, θ0)|2 was calculated. The assumption l = 0 was made, because this term
dominates for realistic incident fields. Figure 5.8 shows the scattered power density
versus frequency and angle for the (9, 0) metallic CN. In this figure, the frequency
dependence at a fixed angle θ exhibits strong oscillations: the scattered field sig-
nificantly increases at frequencies that correspond to the optical transitions. The
resonance scattering maximums are higher for metallic CNs than for semiconduct-
ing CNs. The figure also shows that a relatively small detuning from the exact res-
onance frequencies significantly reduces the intensity of the scattered field. Thus,
one can conclude that, physically, the intense field scattering in CNs is related to
the induction in the CN of a plasmon (which propagates from the CN edge along its
axis) by the incident field. Therefore, the solution of Eqs. (5.32) and (5.33) shows
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Figure 5.8 Density of the scattered power (normalized by the incident power density)
P 0(θ, θ0)= P0(θ)/[4π/c(1+ cos θ0)2], for the metallic (9, 0) nanotube at frequencies of inter-
band transitions when θ0 = π/4.43

that edge resonances play a significant role in the scattering process. This solution
is the basis for solving the problem of electromagnetic scattering by a finite-length
CN.

5.4 Nonlinear processes in carbon nanotubes

Nanostructures, and CNs in particular, exhibit a strong spatial nonhomogeneity
and a large number of elementary resonances. A sufficiently strong dynamic non-
linearity is also typical of the nanostructures in a wide frequency range from the
microwave to the ultraviolet regimes. This nonlinearity can manifest itself in var-
ious electromagnetic processes, such as solitonic propagation, optical instability,
dynamical chaos, and the generation of high-order harmonics. These processes are
of interest from two points of view. First, they can be used for the diagnostics
of nanostructures. Second, these processes open new unique possibilities for con-
trolling electromagnetic radiation, which is very promising for many optical and
nanoelectronic applications.

The spatial nonhomogeneity of nanostructures hampers the description of non-
linear electromagnetic effects observed in them, because it involves nonlinear dif-
fraction. Therefore, special simplifications are required in any particular case to
reduce the original problem to a mathematical model that can be studied analyti-
cally or numerically. Two approaches should be mentioned that are most promis-
ing as applied to nanostructures. The first approach singles out the contribution
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of resonances by expanding the field in a set of specially chosen eigenmodes.88

This approach was developed to solve nonlinear problems of macroscopic elec-
tromagnetics and was used, in particular, to analyze bistability in nonlinear dif-
fraction lattices in the vicinity of the so-called Rayleigh–Wood anomalies.88 An
alternative approach—the electrodynamics of nonlinear composites—is based on
the macroscopic averaging of the electromagnetic field in an ensemble of a large
number of nonlinear scatterers whose sizes and distances are much smaller than
the wavelength.89–91

As an example of a nonlinear problem, consider the generation within a CN
of high-order harmonics of the incident field.46–49 Interest in the generation of the
high-order harmonics is caused primarily by searching for ways to create coher-
ent far-ultraviolet and soft x-ray sources. Gases92,93 and solid surfaces94 have been
studied as possible nonlinear media. Generation of high-order odd harmonics in
gases is caused by the tunneling of electrons from atomic orbitals to the continuous-
spectrum states and back, under the effect of a strong oscillating pumping field. In
solid surfaces, harmonics (both even and odd) are generated by transitions of elec-
trons through solid-vacuum interfaces at high (relativistic) velocities. Pumping is
provided by subpicosecond pulses of a titanium-sapphire laser with power den-
sity ∼1014 W/cm2. The harmonic spectrum has a very characteristic shape in both
cases:92–94 it falls off for the first few harmonics, then exhibits a plateau when
all the harmonics have approximately the same intensity, and ends with a sharp
cutoff. The pumping wave-to-high-harmonics power conversion factor, which is
between 10−6 and 10−7 in the plateau region. In the next section, high-order har-
monic generation by conduction electrons confined at the cylindrical surface of a
CN is considered.46,48,49

5.4.1 Current density spectrum in an isolated CN

Let a CN interact with an intense laser pulse whose electric field is polarized along
the CN axis. Assume that the pumping frequency ω1 satisfies inequalities (5.18),
so that the contribution of interband transitions to the π -electrons motion can be
neglected. This means that the motion of π -electrons is quasi-classical. After ex-
panding Ec(pz, s)/γ0 and Fc(pz, s) of Eq. (5.17) as Fourier series in pz with co-
efficients Esq and Fsq, respectively, the surface current density can be represented
by46

jz(t)=
∞∑

M=0

j(2M+1)
z (ω1) sin

[
(2M + 1)ω1t

]
, (5.34)

where the coefficients

j (2M+1)
z (ω1)= j0

m∑
s=1

∞∑
q=1

qEsqFsqJ2M+1(�q) (5.35)
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involve the cylindrical Bessel functions JN (x) and

Fsq = a

2π

∫ 2π/a

0
Fc(pz, s) exp(−iaqpz) dpz,

(5.36)

Esq = a

2πγ0

∫ 2π/a

0
Ec(pz, s) exp(−iaqpz) dpz.

In these expressions, j0 = 8eγ0/πh̄RCN and �=
st/ω1, where 
st is the angular
Stark frequency; 
st = aeEz/

√
3 and 
st = aeEz for armchair and zigzag CNs,

respectively.
Figure 5.9 displays typical spectrums of the surface current density for metal-

lic and semiconducting CNs at various pumping field intensities. If a titanium-
sapphire laser with λ = 0.8 µm is used for pumping, � = 1 corresponds to the
field E1 = 7× 109 V/m, or the intensity I1 = 1.3× 1013 W/cm2. The most impor-
tant feature of the spectrums shown is the absence of cutoff frequencies.92–94 This
feature is due to the dispersion law for π -electrons in conducting CNs. Figure 5.9
also shows that a harmonic’s spectrum falls much faster with the harmonic’s num-
ber in semiconducting CNs than in metallic CNs.

Figure 5.10 shows the light intensity generated in the spectral range 300 < λ <

750 nm, around the third harmonic (TH) of the Cr:forsterite laser49 at 417 nm. The
spectrums represent a continuous background superimposed on a narrow spectral
line corresponding to the TH of the pump frequency. The TH generated by all sam-
ples of CNs in measurements∗49 is indeed emerging from a broad background, as
illustrated in Fig. 5.10 for a sample of aligned multiwall CNs. The relative intensity
of this background is, however, much higher than in the theoretical prediction. The

Figure 5.9 Envelope of the spectrum of high-order harmonics of the nonlinear current in-
duced in (a) metallic (12, 0) and (b) semiconducting (11, 0) zigzag nanotubes by pumping
pulses of different intensities: (1) �= 1.0, (2) 0.5, and (3) 0.2. The normalization factor j0
for the metallic and semiconducting nanotubes is 2.6×106 A/m and 2.8×106 A/m, respec-
tively; and N = 2M+1 is the harmonic’s number, M = 0, 1, 2 . . . . (Reprinted with permission
from Ref. 48, © 2001 The American Physical Society.)

∗Experiments were carried out at Max Born Institute (Berlin, Germany) and Gothenburg University
& Chalmers University of Technology (Gothenburg, Sweden).
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formation of a local plasma through the emission of free electrons from the CNs
could be the reason for this discrepancy.

TH generation with nonresonant excitation in bulk crystals or gases can be de-
scribed, in general, by the third-order polarization P (3)(3ω1)= χ(3)(3ω1)E3(ω1),
even for rather high intensities below the optical damage threshold.95 One would
also expect a similar behavior for the TH yield of CNs. Figure 5.11(a) shows the
theoretical dependence of the TH yield on the driving field intensity for various
types of CNs. Surprisingly, for pump intensities as low as 1010 W/cm2, the ex-
pected power law for the intensity dependence is broken; thus,

j (3)
z (ω1)∼E

p
z (ω1), (5.37)

with the exponent p lying between 2.04 and 2.58 for the considered types of CNs.
The theory also predicts that p depends not only on the type of the CN and

its diameter, but also on the pumping frequency. The experimental dependencies
measured for samples of nonaligned multiwall CNs in Fig. 5.11(b) show good
agreement with this theoretical prediction. Physically, this fact indicates that the
interaction of CNs with an intense laser pulse can not be described by a perturba-

Figure 5.10 Broad background and TH signal generated by the interaction of intense
laser radiation with aligned multiwall CNs: (a) theory and (b) experiment. Input intensities:
1, 2.3×1011 W/cm2; 2, 1.7×1011 W/cm2; 3, 1.3×1011 W/cm2; and 4, 0.8×1011 W/cm2.
The experimental curves are corrected for the efficiencies of the monochromator, the pho-
tomultiplier and the transmission of the KG5 filters in the detection system.49
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Figure 5.11 Dependence of the TH generation efficiency on the intensity of the pumping
pulse: (a) theory and (b) experiment.49

tional approach, even for relatively low pump intensities. Note that the theoretical
and experimental values of p agree remarkably well, except for the case of the
orthogonally aligned array of CNs.

An interesting experimental result, shown in Fig. 5.11(b), is the observed de-
crease in slope of the TH intensity at a pump laser pulse intensity of ∼3 ×
1010 W/cm2. Such saturation of the TH signal is also predicted by the theory, how-
ever at incident intensities about two orders of magnitude higher.

A similar situation, where the power expansion of polarization does not work,
occurs for the fifth harmonic of the current density jz at intensities ∼1010 to 1011

W/cm2. Analysis shows that both theoretical and experimental values of the expo-
nent p for the fifth harmonic differ from 5 and, at the same time, are close to each
other (4.0 and 4.26 for experiment and theory, respectively).

In conclusion, the interaction of strong laser fields with samples of CNs can
not be described by a power expansion of the polarization. This results in the vi-
olation of the general expressions j

(3)
z (ω1) ∼ E3

z (ω1) and j
(5)
z (ω1) ∼ E5

z (ω1) for
the dependence of the third and fifth harmonics yields on the input laser field, even
for intensities as low as 1010 to 1011 W/cm2. The results from a fully quantum
theoretical model show good agreement with experimental findings.

In this section, the high-order harmonics of the current density in a single
CN have been studied. The next step is the study of high-order harmonics in ar-
rays of aligned CNs with allowance for dispersion. Such an array is effectively an
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anisotropic birefringent media.40 A consistent analysis of the problem stated with
allowance for phase matching is given elsewhere.48

5.4.2 Negative differential conductivity in an isolated CN

In the quasi-static regime, nonlinear properties of the charge carriers in CNs also
exhibit themselves as portions with the negative differential conductivity (NDC),
dI/dV < 0, in the current-voltage (I-V) characteristics.20,47,96 In a CN interacting
simultaneously with dc and ac fields in the vicinity of a particular operating point in
the I-V characteristics, instability evolves. This makes CNs attractive as potential
nanoscale amplifying diodes similar to the macroscopic tunneling ones.

The I-V characteristics for tunneling electrons in individual single-wall CNs at
low temperatures have been measured.76,97 At temperatures such that kBT � εc

and kBT ��ε, conduction occurs through well-separated discrete electron states;
here, εc is the charging energy, and �ε = πh̄vF /lCN is the energy level spacing.
It is reported76 that �ε 
 0.6 meV for CNs with lCN 
 3 µm; and the estimate
εc 
 1.4e2 ln(lCN/RCN)/ lCN has also been made.98 Thus, εc 
 2.5 meV for CNs of
radius RCN 
 0.7 nm, which is in good agreement with experimental data.76 Under
these conditions, current is produced by the electrons tunneling through a CN in
the presence of the Coulomb blockade induced by the long-range (unscreened)
Coulomb interaction. Due to this mechanism, the observed I-V characteristics are
analogous to those obtained via scanning tunneling microscopy. As a result, the
normalized differential conductivity (V /I)(dI/dV ) proves to be proportional to
the local density of states. Therefore, the I-V characteristics of Refs. 76 and 97
carry important information on the nanotube electron structure. On the other hand,
tunneling in macromolecules (in nanotubes, in particular) can serve as a basis for
monomolecular transistors.19

In this section, the I-V characteristics of CNs at room temperature, when
kBT � εc and kBT � �ε, are theoretically analyzed. Consider a single-wall
zigzag nanotube exposed to a homogeneous axial dc field Ez. We apply the semi-
classical approximation, considering the motion of π -electrons as the classical mo-
tion of free quasi-particles in the field of the crystalline lattice with dispersion law
Eq. (5.4) extracted from quantum theory. The motion of quasi-particles in an exter-
nal axial dc electric field is described by the Boltzmann kinetic equation wherein
∂/∂t = ∂/∂z = 0 is assumed and the collision integral is taken in the relaxation-
time approximation. Depending on the relaxation time, the relaxation term can
describe electron-phonon scattering, electron-electron collisions, etc.

The surface current density is determined by Eq. (5.14). Expansions of
Fc(pz, s) and Ec(pz, s)/γ0 into Fourier series in pz, carried out by analogy with
the previous section, lead us to the equation47

jz(Ez)= j0

2

∞∑
q=1

q2
stτ

1+ (q
stτ )2

m∑
s=1

FsqEsq, (5.38)

Downloaded from SPIE Digital Library on 18 Jun 2012 to 58.97.130.72. Terms of Use:  http://spiedl.org/terms



168 Sergey A. Maksimenko and Gregory Ya. Slepyan

with Fsq and Esq defined by Eq. (5.36). Equation (5.38) is the basis for evaluation
of the I-V characteristics of CNs.

Direct numerical integration in Eq. (5.36) for the coefficients Fsq and Esq is
technically difficult because the integrands are rapidly oscillating functions. There-
fore, the following technique is suggested. The change of variable z = exp(iapz)

transforms the original integrals into integrals over the closed path |z| = 1 in the
complex plane. The integrands have two pairs of branch points in the z plane. The
integrand for Fsq also has an infinite number of first-order poles inside the unit
circle. According to the Cauchy residue theorem, the integrals can be written in
terms of integrals over banks of the branch cuts plus series of residues (for Fsq).
The integrals over the cut banks do not contain oscillating functions and can eas-
ily be calculated numerically. The residue series converge rapidly and can also be
summed numerically.

Let us estimate constraints that follow from this theoretical model. As has been
stated previously, the model describes motion of the quasi-particles by the clas-
sical Boltzmann kinetic equation. Thus, both interband transitions and quantum-
mechanical corrections to the intraband motion are not accounted for in this model.
The first of these approximations is valid when the inequality 
st ≤ ωl holds true,
where ωl is given by Eq. (5.18). The second assumption requires that 
st does
not exceed the allowed band width, which is of the order of γ0. This estimate and
inequality (5.18) reduce both constraints imposed on the Stark frequency to the
limitation on the intensity of the external electric field |Ez|< γ0/2eRCN.

The adopted theoretical model also neglects the Coulomb interaction between
electrons. The role of this interaction in CNs has been addressed.98–100 It has been
found that the short-range electron-electron interaction typical for CN arrays does
not significantly contribute at high temperatures. Since the Coulomb interaction in
an isolated CN is unscreened, it exhibits itself in a different manner to provide an
observable effect over a wide temperature range. Therefore, the results obtained
from the adopted model are applicable primarily to CN arrays. For a single CN,
this model should be modified to allow for the long-range Coulomb interaction.
A change in the temperature dependence of the relaxation time τ is expected as the
only result of the Coulomb interaction.99

Figure 5.12 shows the I-V characteristic of undoped (with zero chemical po-
tential) metallic zigzag nanotubes. When the strength of the imposed electric field
is low, jz is a linear function of Ez, corresponding to ohmic conductivity. By in-
creasing the imposed electric field strength, ∂jz/∂Ez decreases until the current
density reaches its maximum value jmax

z at Ez = Emax
z . Increasing the intensity

of the applied electric field will further decrease jz. Thus, the negative differential
conductivity ∂jz/∂Ez < 0 is predicted.

The imposed field strength Emax
z ≈ 3.2 × 103 V/cm at which the NDC be-

gins to be found to be unexpectedly weak. Indeed, nonlinearity in these structures
is determined by the quantity aEz. In quantum superlattices the spacing is about
10−6 cm,9 which is much greater than the C—C bond length b in graphene. Nev-
ertheless, the NDC is observed in them almost at the same strength of the imposed
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Figure 5.12 I-V characteristics of metallic zigzag nanotubes at T = 287.5 K and
τ = 3 × 10−12 s. (Reprinted with permission from Ref. 47, © 2000 The American Physi-
cal Society.)

field. Therefore, nonlinearity in CNs is much stronger than in quantum superlat-
tices.

To explain this phenomenon, let us compare the nonlinear conductivity mech-
anisms in CNs and superlattices. In quantum superlattices, the dispersion law
is Ev,c(pz) = ±γ ′0[1 − cos(2apz/3)], where γ ′0 is the overlapping integral. Ap-
plying the method described previously to this dispersion law, the expression
jz(Ez) = σzzEz/(1 + iτ 
st) is obtained instead of Eq. (5.38), where σzz =
limEz→0(∂jz/∂Ez) is the linear conductivity. The comparison of these two expres-
sions for the current density shows that a specific feature of CNs is the production
of high-order Stark harmonics. Calculations show that the number of significant
Stark harmonics is within 70 to 150 for metallic CNs and within 200 to 300 for
the semiconducting CNs. As a result, the high-order Stark components play a sig-
nificant role in CNs, and the integral nonlinearity in CNs is much stronger than in
superlattices. Impurities and defects in the lattice provide an additional mechanism
for carrier scattering, which can be described quantitatively by the substitution
τ → τ ′ = τ τ1(τ + τ1)−1, where the relaxation time τ1 is determined by the impu-
rities and defects. Since τ ′ < τ , doping increases Emax

z and decreases ∂jz/∂Ez in
the NDC regime.

The predicted NDC effect in CNs is expected to be observable in sufficiently
long CNs at room temperatures. As was emphasized before, the NDC causes the
current instability. One can expect that simultaneously applied dc and ac fields will
result in dynamic electron localization (which is the nonlinear phase of the instabil-
ity) and in the 2D analog of the self-induced transparency. The effects mentioned
are responsible for the absolute negative conductivity, which is thus predicted in
CNs. Due to this phenomenon, regions must appear where nanotubes exhibit ab-
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solute negative conductivity and active properties, which hints at the possibility of
developing microwave and infrared oscillator nanodiodes in single CNs as well as
in CN arrays.

The predicted NDC mechanism is not alone in creating the NDC effect.
Another mechanism observed in nonhomogeneous nanotubes is caused by tun-
neling of π -electrons through the potential barrier near the nonhomogene-
ity.20,96

5.5 Quantum electrodynamics of carbon nanotubes

5.5.1 Maxwell equations for electromagnetic field operators

In most cases, electromagnetic modeling of nanostructures assumes the number
of photons involved in the process to be large enough to describe the electromag-
netic field by classical equations. At the same time, peculiarities of traditional QED
effects—such as spontaneous emission and electromagnetic fluctuations—as well
as recently raised ideas to use nanostructures for storage and processing of quantum
information, provide a growing interest for developing the QED of nanostructures
and, in particular, CNs. The quantum nature of the electromagnetic field in CNs
should then be taken into account. Since the nano-object (i.e., the CN) is an non-
homogeneity much smaller than the photon wavelength, this issue appears to be
significantly more complex than QED problems in homogeneous media. This sec-
tion is focused on the problem of spontaneous emission of an atom located inside
or in the vicinity of a CN.

Standard schemes of the electromagnetic field quantization are based on modal
representations: in free space, these modes are plane waves; in cavities, they are
eigenmodes. The quantum description of the electromagnetic field replaces coef-
ficients of such modal representations by operators of creation and annihilation of
photons associated with a particular mode.

Since nanostructures are strongly nonhomogeneous open systems, it is usu-
ally difficult to find an appropriate system of eigenmodes. Therefore, an alterna-
tive approach developed recently for lossy dispersive media101 appears to be more
convenient for the QED of nanostructures. This approach rejects the modal rep-
resentation and allows for quantization in the Maxwell equations: the vectors E
and H are replaced by corresponding operators that satisfy the appropriate com-
mutation relations and define observable quantities as mean values of these opera-
tors.

Let us therefore introduce the electric field operator Ê(r)= Ê(+)(r)+ Ê(−)(r),
where

Ê(+)(r)=
∫ ∞

0
Ê(r, ω) dω, Ê(−)(r)= [

Ê(+)(r)
]†

, (5.39)

and † indicates the Hermitian conjugate. The magnetic field operator Ĥ(r) is de-
fined in the same manner.
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Operators Ê and Ĥ are subject to radiation conditions at infinity. They satisfy
the Maxwell equations

∇ × Ê= ik Ĥ, ∇ × Ĥ=−ik Ê+ 4π

c
Ĵ ext, (5.40)

where Ĵext is the external current operator. The effective boundary conditions of
Eqs. (5.19) and (5.20) for Eq. (5.40) are rewritten as

n× (
Ê|ρ=RCN+0− Ê|ρ=RCN−0

)= 0,

n× (
Ĥ|ρ=RCN+0 − Ĥ|ρ=RCN−0

)+ 4π
c

Ĵ ns
z ez = 4π

c
σzz(ω)Êzez,

(5.41)

where n is the unit vector along the exterior normal to the CN surface, Ĵ ns
z

is the operator of an axial noise current, and the axial dynamical conductivity
of CN σzz(ω) is given by Eq. (5.16). The axial noise current is expressed as
Ĵ ns

z = {h̄ωRe[σzz(ω)]/π}−1 f̂ (R, ω) in terms of 2D scalar field operator f̂ (R, ω)

satisfying standard bosonic commutation relations[
f̂ (R, ω), f̂ †(R′, ω′)

]= δ
(
R−R′

)
δ
(
ω−ω′

)
,[

f̂ (R, ω), f̂ (R′, ω′)
]= [

f̂ †(R, ω), f̂ †(R′, ω′)
]= 0,

(5.42)

where δ(·) is the Dirac delta function, (f̂1, f̂2) = f̂1f̂2 − f̂2f̂1, and R lies on the
CN surface. The axial noise current is responsible101 for the correct commutation
relations of the operators Ê and Ĥ. The homogeneous Maxwell Eqs. (5.40) along
with the boundary conditions of Eq. (5.41) describe the QED of CNs.

One of the most important applications102,103 of this quantization scheme is the
dynamics of an excited two-level atom located inside (or near) a dielectric object
with relative permittivity ε(r, ω). This problem considers an electric dipole tran-
sition, characterized by the dipole moment µ and frequency ωA, in an electrically
neutral atom located at position r= rA. The general expression for the spontaneous
radiation time τsp for this system in Markovian approximation is101

�sp = 1

τsp
= 8π

h̄
k2

AµαµβIm
[
Gαβ(rA, rA, ωA)

]
, (5.43)

where kA = ωA/c, and Gαβ are the components of the classical dyadic Green’s
function that accounts for the dielectric object. This notation implies summation
over repetitive indexes.

Expression (5.43) can be interpreted physically as follows. Spontaneous emis-
sion is the process of interaction between an excited atom and the vacuum states
of the electromagnetic field. The vacuum states are diffracted by the dielectric ob-
ject similar to the diffraction of conventional electromagnetic fields. This effect
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is taken into account103 by the difference between the dyadic Gαβ and the free-

space Green’s dyadic G
(0)
αβ . Since Im[G(0)

αβ (rA, rA, ωA)] = ωAδαβ/6πc, Eq. (5.43)

simplifies to the formula104

�(0)
sp =

1

τ
(0)
sp

= 4ω3
A

3h̄c3
|µ|2 (5.44)

for the spontaneous decay time in free space. Note also that the Lamb shift in the
transition frequency due to the presence of the dielectric object, which differs from
that in free space, has been reported.103

Equation (5.43) was used to analyze various physical situations: for example,
to calculate the spontaneous decay time of an excited atom in a spherical micro-
cavity,103 and to study the influence of the local field effects on the spontaneous
emission in optically dense gases and solid dielectrics.102 Next, the foregoing quan-
tization scheme is used to study the spontaneous emission process in CNs.

5.5.2 Spontaneous decay of an excited atom in a CN

Consider the spontaneous decay of an excited atom located inside a CN at a dis-
tance ρ0 from its axis.50 The dipole moment of the atom is assumed to be aligned
with the z axis. Note that application of the EBC method to the problem of the
spontaneous decay of an atom inside a nanotube has already yielded Eq. (5.43).

Since the dipole moment of the atom is parallel to the CN axis, only the longi-
tudinal component Gzz of the dyadic Green’s function is of physical interest. Let
us represent this component in terms of the scalar Green’s function G of the atom
in the CN as follows:

Gzz = 1

k2

(
∂2G

∂z2
+ k2G

)
. (5.45)

In turn, G can be represented as

G=
{

G̃+, ρ > RCN

G0+ G̃−, ρ < RCN,
(5.46)

where G0 = exp(ikρ)/4πρ is the free-space scalar Green’s function. The unknown
functions G̃± satisfy the homogeneous Helmholtz equation and boundary condi-
tions on the CN surface, which follow from the EBCs of Eqs. (5.19) and (5.20)
as

G̃+
∣∣
ρ=RCN

= (G0 + G̃−)
∣∣
ρ=RCN

,[
�(ω)

∂

∂ρ

(
G̃+ − G̃−

)− ξ(ω)

(
∂2G

∂z2
+ k2G

)
G̃+

]∣∣∣∣∣
ρ=RCN

=�(ω)
∂G0

∂ρ

∣∣∣∣
ρ=RCN

.
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The function ξ(ω) is related by Eq. (5.28) to the axial conductivity σzz(ω) of
Eq. (5.16).

Let us seek G̃± as expansions in terms of cylindrical functions. Using
Eq. (5.43), we arrive at the expression

�sp = ζ(ωA)�(0)
sp , (5.47)

where

ζ(ωA)= 1+ 3πRCN

16k3
A

∞∑
p=−∞

Im
∫

C

βAκ4
AI 2

p(κAρ0)K2
p(κARCN)

1− βARCNκ2
AIp(κAρ0)Kp(κARCN)

dh (5.48)

for the spontaneous decay rate of an atom in an isolated CN. Here, κA =
√

h2 − k2
A

and βA =−ξ(ωA)/[1− γ (ωA)h2]. The integration path C in the complex plane is
shown in Fig. 5.7. The quantity ζ0 directly characterizes the effect of diffraction of
the vacuum states on the spontaneous decay rate of an atom in the nanotube. Note
that the integral in Eq. (5.48) can not be reduced to an integral with finite limits
as was done elsewhere105 for a perfectly conducting cylinder.** This is due to the
contribution to the spontaneous decay of surface waves propagating in the CN. By
analogy with the classical diffraction theory, one can expect this contribution to be
significant.

For the inner region (rA < RCN), Eq. (5.48) is modified by the simple inter-
change of rA and RCN in the numerator of the integrand. Note the divergence of
the integral in Eq. (5.48) at rA = RCN, i.e., when the atom is located directly on
the CN surface. This divergence originates from the averaging procedure over a
physically infinitely small volume when describing the optical properties of a CN.
Such an averaging does not assume any additional atoms on the CN surface; to
take them into consideration the procedure must be modified. Thus, the domain of
applicability of the presented model is restricted by the condition |rA −RCN|> b.

The decay of the excited atom interacting with media may proceed both via
real photon emission (radiative decay) and via virtual photon emission with subse-
quent excitation in the media of quasi-particles (nonradiative decay). Both of these
decay channels are present in the atomic spontaneous decay rate �sp described by
Eqs. (5.47) and (5.48).

The partition of the total �sp into radiative and nonradiative contributions is not
a trivial problem. For an atom near a microsphere, the radiative contribution �r has
been estimated by using the Poynting vector.103 The radiative contribution has also
been estimated for an atom inside an optical fiber.106 Following this approach, let
us estimate the spontaneous emission intensity I (r, t) at large distances |r| →∞.
In a spherical coordinate system, (|r|, φ, θ), with its origin fixed on the atom, we

**Modeling as a perfectly conducting cylinder is inadequate42 for CNs.
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obtain

I (r, t)
 1

|r|2 k4
A|µ|2 sin2 θ

∣∣∣∣∣
∞∑

p=−∞
#p(−ikA sin θ)eipφ

∣∣∣∣∣
2

exp(−�spt), (5.49)

with

#p(x)=


Ip(xrA)

1+RCNβAx2Ip(xRCN)Kp(xRCN)
, rA < RCN,

Ip(xrA)− RCNβAx2I 2
p(xRCN)Kp(xrA)

1+RCNβAx2Ip(xRCN)Kp(xRCN)
, rA > RCN.

(5.50)

Then the relative contribution of the radiative channel is given by

�r

�sp
= c

2πh̄ωA

lim|r|→∞

∫ ∞
0

dt

∫ 2π

0
dφ

∫ π

0
|r|2I (r, t) sinθ dθ

= 3

4ζ(ωA)

∞∑
p=−∞

∫ π

0

∣∣#p(−ikA sin θ)
∣∣2

sin3 θ dθ. (5.51)

Figure 5.13 shows the values of ζ(ωA) calculated according to Eq. (5.48) for
metallic and semiconducting zigzag CNs. The atom is supposedly located on the
CN axis. The frequency range 0.305 < h̄ωA/2γ0 < 0.574 corresponds to visible
light. Lower frequencies h̄ωA/2γ0 < 0.305 correspond to infrared waves emitted

Figure 5.13 Graph of ζ(ωA) calculated from Eq. (5.48) for an atom located on the axis of a
zigzag CN of order (n, 0): 1, (9, 0); 2, (10, 0); and 3, (23, 0). Surface axial conductivity σzz ap-
pearing in (5.48) was calculated in the relaxation-time approximation9 with τ = 3× 10−12 s
(Reprinted with permission from Ref. 50, © 2002 The American Physical Society.)
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by highly excited Rydberg atomic states. A large difference (of three to four orders
of magnitude) is seen in the values of ζ(ωA) for metallic and semiconducting CNs.
The difference is caused by the Drude-type conductivity (intraband electronic tran-
sitions) dominating at infrared and visible frequencies, the relative contribution of
the intraband transitions to the total CN conductivity being larger in metallic than
in semiconducting CNs.41,42,107

As the frequency increases, interband transitions start manifesting themselves
and ζ(ωA) becomes irregular. At high frequencies, there is no significant differ-
ence between metallic and semiconducting CNs of approximately equal radius.
The function ζ(ωA) has dips when ωA equals the interband transition frequencies;
in particular, there is a dip at h̄ωA = 2γ0 for all CNs considered. It is essential that
ζ(ωA)� 1 throughout the entire frequency range considered. This enables us to
formulate the central result of the present analysis: the spontaneous decay prob-
ability of an atom in the vicinity of a CN is larger by a few orders of magnitude
than that of the same atom in free space. In other words, the Purcell effect108 is
extraordinarily strong in CNs. This is physically explained by the photon vacuum
renormalization: the density of photonic states (and, as a consequence, the atomic
decay rate) near a CN effectively increases as per ζ(ω)ω2/πc3, since, along with
ordinary free photons, photonic states coupled with CN electronic quasi-particle
excitations appear. The presence of a CN is seen to drastically accelerate the spon-
taneous decay process of an excited atomic state.

The possible existence of slow surface electromagnetic waves in CNs has been
demonstrated.41,42 Such waves are responsible for the strong Purcell effect for
an atom in a spherical microcavity,103 which conclusion is in qualitative agree-
ment with the results of the present analysis. However, there is the risk of going
beyond the applicability limits of the two-level model and Markovian approxi-
mation.101 Indeed, considering the spontaneous radiation of the atom in the near-
surface regime, one gets

ζ(ωA)≈ 3ε′′(ωA)

8 | ε(ωA)+ 1 |2
1

(kA|rA−RCN|)3
+O

(|rA−RCN|−1)
, (5.52)

for the tangential atomic dipole orientation;103 here, ε(ω) is the relative permittiv-
ity of the subsurface media, and ε′′(ω) = Im[ε(ω)]. Seemingly, approaching the
surface, one obtains arbitrary large �. However, in doing so one has to remain
within the applicability domain of the macroscopic approximation.

Equation (5.52) was derived under the condition that |rA − RCN| is much
smaller than all other parameters, or, more physically, when the atom is placed
so close to the surface that it sees a quasi-plane and the surface curvature is irrele-
vant. For CNs of small enough radius (m≈ 10 to 30), this condition contradicts the
inequality |rA −RCN|> b determining the applicability limits of the macroscopic
approximation for this particular task. As a consequence, the CN surface curvature
turns out to be essential and Eq. (5.48) can not be, in principle, reduced to any
equation similar to Eq. (5.52). Thus, the large Purcell effect in CNs has nothing to
do with the near-surface regime.
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Figure 5.14 shows ζ(ωA) for an atom located outside a CN at different dis-
tances outside the CN surface. The qualitative behavior of ζ(ωA) is similar to that
in Fig. 5.13 for an atom inside a CN. It is seen that ζ(ωA) rapidly decreases with
increasing distance—as it should be, in view of the fact that photonic states cou-
pled with CN electronic excitations are spatially localized on the CN surface, and
their coupling strength with the excited atom decreases with increasing distance
of the atom from CN. Figure 5.15 shows the ratio �r/ �sp calculated according to
Eq. (5.51) for an atom located on the axis of a CN.

Figure 5.14 Plot of ζ(ωA) for an atom at different distances outside a zigzag (9, 0) CN:
1, rA = 1.5RCN; 2, 2.0RCN; and 3, 2.5RCN. Inset: ξ(ωA) at ωA = 3γ0/h̄ as a function of
rA/RCN for an atom near a (9, 0) CN modeled as a perfectly conducting cylinder. (Reprinted
with permission from Ref. 50, © 2002 The American Physical Society.)

Figure 5.15 Ratio �r / �sp calculated from Eq. (5.51) for an atom located at the axis of a
zigzag CN of order (n, 0): 1, (9, 0); 2, (10, 0); and 3, (23, 0). (Reprinted with permission from
Ref. 50, © 2002 The American Physical Society.)
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Note that �r/ �sp = Ws(ωA)/h̄ωA, with Ws(ωA) being the total power of
atomic spontaneous radiation far from the CN. The ratio is very small, indicat-
ing that nonradiative decay dominates over radiative decay. However, the radiative
decay is seen to essentially contribute in the vicinity of the interband transition
frequencies. Therefore, the frequency dependence of Ws(ωA)—which quantity, in
principle, can be measured experimentally—reproduces the specific features of the
CN electronic structure. The main conclusion one can draw from Fig. 5.15 is that
the Purcell effect in CNs, along with the increase of the atomic spontaneous decay
rate, manifests itself by decreasing the power of spontaneous radiation.

The presented model of atomic spontaneous decay in the presence of a CN al-
lows, as a limiting case, to consider the CN as a perfectly conducting cylinder.105

The inset in Fig. 5.14 shows ζ(ωA) at ωA = 3γ0/h̄ (kARCN 
 0.01) as a func-
tion of rA/RCN for this case. The dependence is similar to that for a z-oriented105

dipole at kARCN = 1. For the atom inside the CN, Eq. (5.48) yields ζ(ωA)→ 0
as σzz →∞. The result is natural since, in this case, only one electromagnetic
eigenmode can propagate in the CN; this mode is essentially transverse and, conse-
quently, is not coupled with the axially oriented atomic dipole moment. However,
the actual ζ(ωA) behavior is quite different from that predicted by the perfectly
conducting cylinder model, since the latter does not account for CN electronic
quasi-particle excitations responsible for the nonradiative atomic decay dominat-
ing the total spontaneous decay process.

The theory may be generalized to cover the transverse atomic electric di-
pole orientation, electric quadrupole and magnetic dipole atomic transitions, the
properties109 of organic molecules inside and/or outside CNs. The mechanism that
was revealed of the photon vacuum renormalization is likely to manifest itself in
other phenomena in CNs such as Casimir forces or electromagnetic fluctuations.

The presented results can be tested by methods of atomic fluorescent spec-
troscopy and may have various physical consequences. In particular, the effect of
the drastic increase of the atomic spontaneous decay rate may turn out to be of
practical importance in problems of the laser control of atomic motion,110 increas-
ing the ponderomotive force acting on a atom moving in the vicinity of a CN in a
laser field. One might expect the Purcell effect peculiarities predicted for CNs to
manifest themselves in macroscopic anisotropically conducting waveguides with
strong wave deceleration (for example, in microwave spiral or collar waveguides
with highly excited Rydberg atoms inside).

5.6 Semiconductor quantum dot in a classical electromagnetic
field

An exquisite description of quantum dots has been provided in this book by
Boxberg and Tulkki.111 The remainder of this chapter therefore deals only with
the nanoelectromagnetics of QDs.
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5.6.1 Model Hamiltonian

Let an isolated QD imbedded in a host semiconductor be exposed to a classi-
cal electromagnetic field. Further consideration is restricted to a two-level model,
which treats the QD as a set of electron-hole pairs that are strongly confined in
space.112 The electron wave function is stated as

 qν(r)= Fq(r)uν(r), (5.53)

where the index ν takes the values e and g, which correspond to excited and ground
bands of the electron, respectively, and uν(r) are the Bloch function amplitudes
as per Eq. (5.8). The function Fq(r) varies slowly on the atomic scale envelope
satisfying the Schrödinger equation. For a spherical QD of radius RQD,

Fq(r)≡ Fnlm =CnlYlm(ϑ, ϕ)Jl+1/2(κnlr/RQD)/
√

r, (5.54)

where Ylm(ϑ, ϕ) are the spherical harmonics,104 κnl is the nth root of the Bessel
function Jl+1/2(x), (r, ϑ, ϕ) is the triad of spherical coordinates, and the indices
n and l identify a particular mode in the electron-hole pair’s spectrum. The co-
efficients Cnl =

√
2[RQDJl+3/2(κnl)]−1 orthonormalize Fnlm. The function Fq(r)

must be found numerically for QDs of more complicated shapes.
In terms of field operators

 ̂†
ν (r, t)=

∑
q

a†
qν(t) ∗qν(r),  ̂ν(r, t)=

∑
q

aqν(t) qν(r), (5.55)

the polarization single-particle operator is expressed by

P̂(r, t)= er
∑
ν,ν′

 ̂†
ν (r, t) ̂ν′(r, t), (5.56)

where a
†
qν and aqν stand for the electron creation and annihilation operators,

respectively. These operators satisfy the anticommutative relations usual for
fermions.104 After taking the periodicity of the Bloch functions uν(r) into ac-
count and considering the envelope function Fq(r) to be constant over the unit cell
of the QD crystalline lattice, the polarization operator averaged over the unit cell’s
volume Vuc is obtained as

P̂(r)= er
(
F̂ †

e F̂e + F̂ †
g F̂g

)+ (
µF̂ †

e F̂g+µ∗F̂ †
g F̂e

)
, (5.57)

where
F̂ν(r, t)=

∑
q

aqν(t)Fq(r), (5.58)
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and

µ= e

Vuc

∫
Vuc

ru∗e(r)ug(r) d3r (5.59)

is the dipole moment of the electron-hole pair. Thus, the averaged polarization
operator is expressed in terms of slow-varying envelopes; and the Bloch functions
define only the electron-hole pair’s dipole moment, which is further considered as
an external input parameter. Note that the first term on the right side of Eq. (5.57)
describes intraband motion, while the second term corresponds to the interband
transitions.

Further analysis is restricted to the two-level model, which allows the neglect
of all terms in the sum of Eq. (5.58) except one (whose index is omitted from here
onwards). As a result, Eq. (5.57) is reduced to

P̂(r)= |F (r)|2[
er

(
a†

e ae + a†
g ag

)+ (−µb̂†+µ∗b̂
)]

, (5.60)

where b̂† = aga
†
e and b̂ = a

†
gae are the creation and annihilation operators for

electron-hole pairs.
Any QD is essentially a multilevel system. However, the joint contribution of

all transitions lying far away from a given resonance can be approximated by a
nonresonant relative permittivity εh. The host semiconductor relative permittivity
is also assumed to be equal to εh. For analytical tractability, let εh be frequency in-
dependent and real-valued. This enables us to put εh = 1 without loss of generality.
The substitutions {

c→ c/
√

εh, µ→ µ/
√

εh

}
(5.61)

in the final expressions will restore the case εh 	= 1.
In the strong confinement regime, the Coulomb interaction is assumed to be

negligible, so that electrons and holes in a QD are independently mobile and spatial
quantization is entailed by the interaction of the particles with the QD boundary.
The Hamiltonian formalism describes the system “QD + electromagnetic field”
and takes the role of the QD boundary into account. Apparently, the most sequen-
tial and rigorous approach is based on the concept of spatially varying interaction
coefficients.113,114 However, the use of this approach for systems with stepwise
interaction coefficients entails that the Hamilton equations are inapplicable at the
discontinuity. The same problem is found in the macroscopic electrodynamics of
stratified media.16 By analogously introducing a transient layer and reducing its
thickness, one can obtain boundary conditions complementary to the Hamilton
equations for the system under analysis. However, this approach is much too com-
plicated and has been implemented only for the only simplest configuration: the
interaction of a material layer with normally incident light.113,114 Note that even in
this simplest case, the local field effects are left unconsidered.
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A constructive approach for QDs assumes them to be electrically small.57 This
assumption neglects the retardation of the electromagnetic field inside the QD. The
spatial averaging of the electric field over the QD volume is thereby introduced.

In this approximate framework, the “QD + electromagnetic field” system is
described by the Hamiltonian H=H0+HIL, where H0 = εea

†
e ae+ εga

†
gag is the

Hamiltonian of carrier motion, while εg,e are the energy eigenvalues. The term

HIL =−
∫

VQD

P̂(r, t)EL(r) d3r (5.62)

describes interaction with the electromagnetic field, where the polarization opera-
tor P̂ is given by Eq. (5.60), EL is the field inside the QD, and VQD is the QD vol-
ume. Thus, the light-matter interaction Hamiltonian is defined in the dipole approx-
imation,101,110 i.e., a negligibly small term proportional to AA is rejected. Such
an approximation is valid, at least, in the vicinity of the exciton resonance.115,116

Note that the model can also describe higher excitonic modes; then, operators b̂†

and b̂, respectively, move up the exciton into the next energy level and return it
back.

The field inside the QD—involved in Eq. (5.62)—is different from the external
exciting field E0. Further analysis is aimed to express Hamiltonian Eq. (5.62) in
terms of the field E0 assuming the QD to be electrically small. A time-domain
integral relation follows from the Maxwell equations to yield117,118

EL(r, t)= E0(r, t)+∇∇ ·
∫

VQD

P(r′, t)
d3r′

|r− r′| (5.63)

in the small-QD approximation.
Substitution of this equation into Eq. (5.62) enables us to present the interaction

Hamiltonian by

HIL =H0L+�H, (5.64)

where

HI0 =−
∫

VQD

P̂(r, t)E0 d3r, (5.65)

and

�H=
∫

VQD

∫
VQD

P̂(r, t)∇∇ · P(r′, t)
d3r d3r′

|r− r′| . (5.66)

The term �H is the local-field correction to the interaction Hamiltonian. Since the
QD is assumed to be electrically small (and, in consequence, the field inside QD
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is uniform), H0L can be expressed in terms of the average over the QD volume
polarization operator P̂v as

HI0 =−VQDE0P̂v, (5.67)

where P̂v = V −1
QD(−µb̂†+µ∗b̂).

The described procedure removes the intraband-motion contribution from the
polarization operator. After assuming this contribution to be negligible because
of the nonresonant nature of intraband transitions, the substitution P̂(r, t) =
VQDP̂v(t)|F (r)|2 in Eq. (5.66) results in

�H= 4πVQDÑαβP̂vβ

〈
P̂v

〉
α

, (5.68)

where

Ñαβ =−VQD

4π

∫
VQD

∫
VQD

∂2

∂xα∂xβ

|F (r)F (r′)|2
|r− r′| d3r d3r′.

The Hamiltonian given by Eqs. (5.67) and (5.68) implies the relation

EL = E0 − 4πVQD|F (r)|2N
〈
P̂v

〉
(5.69)

between the local and the exciting fields, with the components of the depolarization
dyadic N being119

Nαβ =−VQD

4π

∂2

∂xα∂xβ

∫
VQD

|F (r′)|2
|r− r′| d3r′. (5.70)

The second term on the right side of Eq. (5.69) is the depolarization field in
the QD. Generally, owing to the term |F (r)|2, this field is nonlocal with respect to
the macroscopic polarization and, consequently, is nonhomogeneous. Neglecting
nonlocality in the strong confinement regime permits the approximation |F (r)|2 

1/VQD, which leads to the model of a QD as a dielectric particle.57,112

Let the electron-hole pair’s dipole moment be directed along the unit vector ex

in a Cartesian coordinate system related to the QD; i.e., µ = µex . Then the total
Hamiltonian is represented by

H=H0+HI0+�H, (5.71)

where
HI0 =−V E0xP̂vx, (5.72)

�H= 4πÑx

(
µ∗b̂−µb̂†)(

µ∗〈b̂〉 −µ〈b̂†〉) (5.73)

and
Ñx = µ

(
Ñµ

)
/|µ|2 ≡ ex(Ñex). (5.74)
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Thus, in the total Hamiltonian we have separated the contribution HI0 of the
interaction of electron-hole pairs with the exciting field from the contribution �H
of depolarization. This enables consideration of the local field effects without an
explicit solution of the electrodynamic boundary-value problem. This is of special
importance for the quantization of the electromagnetic field: as �H is expressed in
terms of dynamic variables of particle motion, Ñx contains complete information
about electromagnetic interaction.‡

5.6.2 Equations of motion

Let |ψ̃(t)〉 be the wave function of the “QD + classical electromagnetic field”
system. In the interaction representation, this system is described by the Schrödin-
ger equation

ih̄
∂|ψ〉

∂t
=Hint|ψ〉, (5.75)

where

Hint = exp(iH0t/h̄)(HI0 +�H) exp(−iH0t/h̄) (5.76)

and

|ψ〉 = exp(iH0t/h̄)|ψ̃〉. (5.77)

The function |ψ〉 can be represented by the sum

|ψ〉 =A(t)|e〉 +B(t)|g〉,

where A(t) and B(t) are coefficients to be found; while |g〉 and |e〉 are the wave
functions of QD in the ground and excited states, respectively. Then, the macro-
scopic polarization is determined by

Pvx = 〈ψ̃|P̂vx|ψ̃〉 = Re

[
2

VQD
µ∗A(t)B∗(t)e−iω0t

]
, (5.78)

and the asterisk stands for the complex conjugate.
Within the confines of the slowly varying amplitude approximation, the excit-

ing field is given by E0x = Re[E(t) exp(−iωt)], with E(t) as the slowly varying
amplitude. Then, after taking Eq. (5.78) as well as the identities b̂†|e〉 = b̂|g〉 = 0,
b̂|e〉 = |g〉 and b̂†|g〉 = −|e〉 into account, and neglecting rapidly oscillating terms,

‡The situation with �H is, to a certain extent, analogous to the situation with A ·A. The latter term
is expressed in terms of a field dynamical variable (the vector potential), but it contains information
about the location of the particle because the vector potential is taken at the location of the particle.
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the equations of motion44,56

ih̄
∂A

∂t
= h̄(�ω)A|B|2 − 1

2
E(t)µBei(ω0−ω)t ,

(5.79)

ih̄
∂B

∂t
= h̄(�ω)B|A|2 − 1

2
E
∗
(t)µ∗Ae−i(ω0−ω)t ,

emerge, where

�ω = 4π

h̄VQD
Ñx |µ|2. (5.80)

These equations constitute a basic self-consistent system describing the interac-
tion of a QD with the electromagnetic field. The consistency is provided by the
depolarization-induced first terms on the right side of the equations. Physically, the
system of Eq. (5.79) is analogous to Bloch equations for optically dense media.120

Relaxation can easily be included in Eq. (5.79) either by introduction of the phe-
nomenological transverse and longitudinal relaxation times120 or by a suitable
modification of the initial Hamiltonian of Eq. (5.71).

5.6.3 QD polarization

An excited QD can be analyzed by supplementing Eq. (5.79) with the initial con-
ditions A(0) = 1 and B(0) = 0. In the linear approximation with respect to the
electromagnetic field, we can set A(t) ≈ 1. Physically, this restricts the analysis
to temporal intervals essentially less than the relaxation time of the given resonant
state. Then, the equations of motion reduce to

ih̄
∂B

∂t
= h̄(�ω)B − 1

2
E
∗
(t)µ∗ei(ω0−ω)t . (5.81)

For time-harmonic excitation, i.e., for E(t) = E = const, this equation is ex-
actly integrable; thus,

B(t)≈− E
∗
µ∗

2h̄(ω0 −�ω−ω)

[
e−i(ω0−ω)t − e−i�ωt

]
, (5.82)

with �ω determined by Eq. (5.80). Therefore, depolarization leads to the shift �ω

of the resonant frequency. This shift has been predicted on the basis of several
different phenomenological models.53,54,112,121 It has been predicted and experi-
mentally verified that this shift in nonspherical QDs provides polarization split-
ting of the gain band.51,52 Note also that the depolarization effect has been pro-
posed by Gammon et al.122 as a hypothesis to explain the experimentally observed
polarization-dependent splitting of the photoluminescence spectrum of a single
nonspherical QD. Finally, Eq. (5.80) has been obtained by other means too.51,52
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The spin-degeneracy of electron-hole pairs results in duplication of �ω be-
cause the total polarization of the system is provided by superposition of two partial
polarizations corresponding to two spin components. Then, expressing the macro-
scopic polarization in terms of B(t), we find

Pvx = Re

{ |µ|2
h̄VQD(ω+�ω−ω0)

E
[
e−iωt − e−i(−�ω+ω0)t

]}
. (5.83)

For a ground-state QD, the initial conditions are A(0) = 0 and
B(0)= 1. Accordingly,

A(t)≈ Eµ

2h̄(ω0+�ω−ω)

[
ei(ω0−ω)t − e−i�ωt

]
. (5.84)

Thus, in the ground state, the local field effects manifest themselves in the same
shift �ω of the resonance, but with the opposite sign. If we introduce a finite
radiation linewidth, the interaction of a ground-state QD with the electromagnetic
field corresponds to absorption, while interaction of an excited QD corresponds to
stimulated emission. In other words, the optical absorption and gain of an isolated
QD could be distinguished owing to the depolarization shift—blue in the former
case and red in the latter.

5.7 Interaction of QD with quantum light

5.7.1 Model Hamiltonian

At the first glance, Eq. (5.69) remains valid for nonclassical fields, if one inserts
operators instead of the corresponding fields. However, such is not the case; and
the relation between the exciting and the local fields in QED requires different
handling. The time-domain integral equation

ÊL(r, t)= Ê0(r, t)+
(
∇∇ · − 1

c2

∂2

∂t2

)
× 4π

∫ t

−∞

∫
VQD

G(ret)(r− r′, t − t ′ )̂P(r′, t ′) d3r′ dt ′, (5.85)

must now be used, where the retarded Green’s function is given by114

G(ret)(r, t)= lim
$→0+

1

(2π)4

∫ ∫
exp[i(kr−ωt)]

k2− (ω+ i$ )2/c2
d3k dω, (5.86)

and the polarization operator is given by

P̂(r, t)= |F (r)|2(−µb̂†+µ∗b̂
)= |F (r)|2(µ|e〉〈g| +µ∗|g〉〈e|).
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To derive a relation for the field and polarization operators, we first construct
the interaction Hamiltonian

HIL =−1

2

∫
VQD

(
P̂ ÊL + ÊLP̂

)
d3r. (5.87)

The operators P̂ and ÊL are generally noncommutative, since the field operator ÊL

is not transverse.§ Next, we substitute Eq. (5.85) into Eq. (5.87) and separate out
the Hamiltonian component corresponding to the depolarization field as

�H=−2π

∫ t

−∞

∫
VQD

∫
VQD

(
∂2

∂xα∂xβ

− δαβ

1

c2

∂2

∂t2

)
G(ret)(r− r′, t − t ′

)
×

[
P̂α(r′, t ′)P̂β(r, t)+ P̂β(r, t)P̂α(r′, t ′)

]
d3r d3r′ dt ′. (5.88)

Equation (5.88) can be drastically simplified by applying the mean-field ap-
proximation. In accordance with that approximation, the replacement P̂α(r′, t ′)→
〈P̂α(r′, t ′)〉Î is implemented in Eq. (5.88), and the retardation inside the QD is
neglected because of it being electrically small. Therefore, G(ret)(r, t) ∼ δ(t)/|r|
and the O(∂2/∂t2) terms in Eq. (5.88) are omitted. That equation then reduces
to Eq. (5.68). Analogous approximations being applied to Eq. (5.85) lead to the
formula

ÊL = Ê0 − 4πVQD|F (r)|2N〈̂Pv〉 Î , (5.89)

which is the nonclassical alternative to Eq. (5.69).
In order to obtain the total Hamiltonian of the “QD + quantum electromag-

netic field” system, the right side of Eq. (5.71) has to be augmented by the term
HF corresponding to the free-space field, and the replacement E0x → Ê0x must be
implemented in the term HI0. In the quantum optics of nonhomogeneous media,
the problem of representing the electromagnetic field operator exists, since the lo-
cal fields are nonhomogeneous. Unlike conventional approaches, the proposed57

scheme of electromagnetic field quantization does not encounter this problem,
since the interaction Hamiltonian is represented in terms of the exciting field but
not the local field; thus, the usual plane wave expansion is applicable to the opera-
tor Ê0x , and the role of the QD boundary is taken into account by the term �H in
Eq. (5.73). Thus, the Hamiltonian for the quantum electromagnetic field is

H=H0 +�H+HI0 +HF , (5.90)

where HI0 =−VQDP̂vxÊ0x and

Ê0x = i
∑

k

√
2πh̄ωk




(
ckeikr− c

†
ke−ikr)

. (5.91)

§The second term on the right side of Eq. (5.85) contains a longitudinal component.
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In these equations, 
 is the normalization volume, whereas c
†
k and ck are the photon

creation and annihilation operators, respectively. In accordance with QED litera-
ture, the index k introduces summation over different photonic modes k; k = |k|
and ωk = c|k|. The definition in Eq. (5.91) of the electric field operator restricts
consideration to states of quantum light, which are superpositions of photons with
a given polarization—the so-called factorized states of light.101 Equation (5.91)
yields

HF = h̄
∑

k

ωk

(
c

†
kck + 1

2

)
, (5.92)

and
HI0 =−h̄

∑
k

(
gkb†ck − g∗kbc

†
k

)
, (5.93)

where gk =−iµ
√

2πωk/h̄
 exp(ikrc), and rc is the radius vector of the QD geo-
metrical center.

The Hamiltonian of Eq. (5.90) conforms to the use of Eq. (5.89) for field oper-
ators in lieu of Eq. (5.69) for classical fields. The term Ê0 in Eq. (5.89) represented
by a superposition of photons123 is an auxiliary field that can be interpreted as an
incident field only in the classical limit. Such a simple interpretation is inapplicable
for quantum light. Indeed, the operator Ê0, in general, is not identical to the field
either inside or outside the QD; moreover, this term can arise even in the absence
of any external sources (for example, in spontaneous transitions). Note also that Ê0
is transverse, and can be represented as a superposition of “genuine” photons.123

However, the total field inside the QD is not transverse118,124 due to the second
term on the right side of Eq. (5.85).

5.7.2 Equations of motion

In the interaction representation, the “QD + quantum electromagnetic field” sys-
tem with the Hamiltonian of Eq. (5.90) is described by Eq. (5.75), after the substi-
tution H0→H0+HF has been performed therein. Then the wave function of the
system can be written as

|ψ(t)〉 =
∑

k,nk=0

[
A

nk

k (t)|e〉 +B
nk

k (t)|g〉]|nk〉, (5.94)

where A
nk

k (t) and B
nk

k (t) are functions to be found, |nk〉 denotes the field states
where there are n photons in mode k and no photons in all other modes, and |0〉
is the wave function of the electromagnetic field in the vacuum state. In view of
Eq. (5.94), Eq. (5.78) for macroscopic polarization is transformed into

Pvx = Re

{
2

VQD
µ∗e−iω0t

∑
k,nk=0

A
nk

k (t)
[
B

nk

k (t)
]∗}

. (5.95)
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Then, after some standard manipulations with the Schrödinger Eq. (5.75), the infi-
nite chain

i
dA

nk

k

dt
=�ωB

nk

k

∑
ς,mς

A
mς
ς

(
B

mς
ς

)∗ + gk

√
nk + 1B

nk+1
k e−i(ωk−ω0)t

+ δnk,0

∑
ς

(1− δςk)gς B
1ς
ς e−i(ως−ω0)t , (5.96)

i
dB

nk

k

dt
=�ωA

nk

k

∑
ς,mς

(
A

mς
ς

)∗
B

mς
ς + g∗k

√
nkA

nk−1
k ei(ωk−ω0)t ,

of coupled nonlinear differential equations for slowly varying amplitudes emerges
for any nk . This system of equations serves as a basis for further analysis with
different initial conditions. Note that accounting for the depolarization field is a
specific property of this system that makes it nonlinear and couples all quantum
states of the electromagnetic field. These properties distinguish this system from
conventional equations of quantum electrodynamics. Equations (5.96) satisfy the
conservation law ∑

k,nk=0

[∣∣Ank

k (t)
∣∣2+ ∣∣Bnk

k (t)
∣∣2

]
= 1, (5.97)

which dictates the normalization of the functions involved.
In the limit Ñx → 0, the system of Eq. (5.96) splits into recurrent sets of linear

equations coupling only the |nk〉 and |nk + 1〉 states. Then the system becomes
equivalent to the ordinary equations of motion of a two-level atom exposed to a
quantum electromagnetic field.110

5.7.3 Interaction with single-photon states

The phenomenon of spontaneous emission from a QD can be treated as the inter-
action of an excited QD with two states of the electromagnetic field, |0〉 and |1k〉.
The initial conditions

A0
k(0)= 1, B0

k (0)= B
1k

k (0)=A
1k

k (0)= 0 (5.98)

for spontaneous emission describe an excited state of the electron-hole pair with
zero photons at the initial instant. After neglecting all other states, Eqs. (5.96) re-
duce to following form:

dA0
k

dt
=−i

∑
ς

gς B
1ς
ς e−i(ως−ω0)t ,

dB
1k

k

dt
=−ig∗kA0

kei(ωk−ω0)t .

(5.99)
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When investigating this new system of equations, we should take the natural width
of the resonant transition into account. Hence, we can not assume A0

k(t) ≈ 1, as
was done to derive Eq. (5.82).

The integration of the second of Eqs. (5.99) with respect to time and substitu-
tion of the result in the first of Eqs. (5.99) leads to the Volterra integrodifferential
equation

dA0
k

dt
=

∫ t

0
K

(
t − t ′

)
A0

k(t ′) dt ′ (5.100)

with the kernel

K(t)=−
∑

k

|gk|2e−i(ωk−ω0)t . (5.101)

By means of the replacement

∑
k

[·] → 


(2π)3

∫ 2π

0
dϕ

∫ π

0
sin θ dθ

∫ ∞
0

k2[·]dk,

which corresponds to the limit 
→∞, and subsequent integration,125 Eq. (5.101)
is reduced to the simple result

K(t)=−�(0)
sp δ(t)/2, (5.102)

where �
(0)
sp is given by Eq. (5.44).

Note that nonresonant transitions can be accounted for by means of Eq. (5.61),
and the result is the same as reported by Thränhardt et al.126 An analogous result
has been obtained for the spontaneous emission of an excited atom imbedded in a
lossy dispersive dielectric media.127

Equation (5.100) with the Dirac delta function as the kernel has the solution

A0
k(t)= exp

[−�(0)
sp t/2

]
. (5.103)

In the frequency domain, this solution defines the Lorentz shape [ω − ω0+
i�

(0)
sp /2]−1 for the spontaneous emission line.
Unlike absorption and stimulated emission, the spontaneous emission line does

not experience any depolarization shift. The depolarization also does not influence
the resonance linewidth. A similar situation appears in the interaction of QD with
any pure state of electromagnetic field.57 To clarify this conclusion, let us consider
the mean value

〈Ê0x〉 = 〈ψ̃ |Ê0x|ψ̃〉 = −2 Im
∑
k,nk

ei(krc−ωkt)
√

2πh̄ωk/


×√
nk + 1

[
(A

nk

k )∗Ank+1
k + (B

nk

k )∗Bnk+1
k

]
(5.104)
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of the electric field operator Ê0x of Eq. (5.91) for the wave function Eq. (5.94).
It follows from this expression that 〈E0x〉 = 0 for any state of the electromagnetic
field with a fixed number of photons. Thus, if the initial state is a pure state (as for
spontaneous emission), its mean value is equal to zero and it does not induce the
depolarization field.

Absorption of a single photon with the wave number ς = |ς | is determined by
the initial conditions B

1k

k (0)= δkς and A0
k(0)= 0 . Then the solution of the system

of Eqs. (5.96) is given by

A0
ς (t)= gς

ω−ω0+ i�
(0)
sp /2

[
ei(ω0−ω)t − e−�

(0)
sp t/2

]
. (5.105)

Thus, differing from the emission and absorption of classical electromagnetic
waves—see Eqs. (5.82) and (5.84), respectively—the spontaneous emission and
absorption of a single photon are characterized by the same resonant frequency
and the same radiative linewidth. In other words, single-photon processes are in-
sensitive to the depolarization field. This is because the mean electric field of a
single photon is equal to zero, as per Eq. (5.104).

5.7.4 Scattering of electromagnetic Fock qubits

A superposition of two arbitrary quantum field states is referred to as a qubit. While
a Fock qubit is the superposition of two arbitrary Fock states that are eigenfunctions
of the Hamiltonian HF of Eq. (5.92), Fock states are those states that have a fixed
number of photons.

Let a ground-state QD interact with the electromagnetic field in the Fock qubit
state of the mode ς : βNς |Nς 〉 + βNς+1|Nς + 1〉. Here βNς and βNς+1 are the
complex-valued quantities such that |βNς |2 + |βNς+1|2 = 1. The physical princi-
ples behind the generation of arbitrary quantum states of light and, particularly,
electromagnetic qubits have been described in detail elsewhere.128,129 Explicit ex-
pressions for wave functions can easily be found, allowing analytical treatment.

Suppose that Nς ≥ 2.*** The dynamical properties of the system are described
by Eq. (5.96) supplemented by the initial conditions

B
nk

k (0)= (δNk,nk
βNk
+ δNk+1,nk

βNk+1)δkς , A
nk

k (0)=A0
k(0)= B0

k (0)= 0

with nk ≥ 1. As analysis is confined to a specific photon mode here, the index
ς in Nς is further omitted; also, analysis is restricted to temporal intervals that
are small in comparison to the radiation lifetime. Then the approximate relations
BN

ς (t) ≈ βN = const and BN+1
ς (t) ≈ βN+1 = const hold true. As a result, the

***The cases Nς = 0 and Nς = 1 can be considered by analogy but lead to mathematically different
results.57
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amplitudes AN
ς and AN+1

ς satisfy the coupled differential equation

d

dt

(
AN

ς

AN+1
ς

)
=−i�ω

( |βN |2 βNβ∗N+1

β∗N βN+1 |βN+1|2
) (

AN
ς

AN+1
ς

)
+

(
fς (t)

0

)
, (5.106)

while the amplitude AN−1
ς satisfies the differential equation

dAN−1
ς

dt
=−igς

√
NβN e−i(ως−ω0)t , (5.107)

where fς (t)=−igς

√
N + 1βN+1 exp[−i(ως −ω0)t].

If fς (t) = 0 in Eq. (5.106), the partial solutions of the type AN+1,N
ς ∼

exp(−idt) satisfy the characteristic equation d2− d�ω= 0, which has two roots,
d1 = 0 and d2 =�ω, with �ω defined by Eq. (5.80). Thus, the eigenstate spectrum
of system Eq. (5.106) contains states with resonant frequency both unshifted and
shifted due to depolarization; and these eigenstates become degenerate as Ñx→ 0.
The gap between the resonances significantly exceeds the linewidth: �ω� �

(0)
sp /2.

The general solution of Eq. (5.106) is the superposition of the two eigenstates
as follows:

AN
ς (t)= c1ς (t)+ c2ς (t)e−i�ωt ,

AN+1
ς (t)=− β∗N

β∗N+1
c1ς (t)+ βN+1

βN

c2ς (t)e−i�ωt .
(5.108)

These equations employ the time-varying coefficients

c1ς (t)=−gς

√
N + 1βN+1|βN+1|2 ei(ω0−ω)t − 1

ω0 −ω
,

(5.109)

c2ς (t)=−gς

√
N + 1βN+1|βN |2 ei(ω0−ω+�ω)t − 1

ω0 −ω+�ω
,

while Eq. (5.107) gives

AN−1
ς (t)=−gς

√
NβN

[ei(ω0−ω)t − 1]
ω0−ω

. (5.110)

Equations (5.108) and (5.110) enable us to derive an explicit expression for the
transition probability as

w(t)= d

dt

[∣∣AN−1
ς (t)

∣∣2 + ∣∣AN
ς (t)

∣∣2+ ∣∣AN+1
ς (t)

∣∣2
]
.
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The QD effective scattering cross section is proportional to the quantity w(∞) =
limt→∞w(t). Certain elementary manipulations and the substitution sin(αt)/

πα→ δ(α) then yield

w(∞)= 2π |gς |2
{[

N |βN |2 + (N + 1)|βN+1|4
]
δ(ω0−ω)

+ (N + 1)|βN |2|βN+1|2δ(ω0 +�ω−ω)
}
. (5.111)

The substitution �ω→−�ω should be performed in Eq. (5.111) for stimulated
emission. Figure 5.16 schematically represents the QD optical response defined by
Eq. (5.111) for the absorption of a Fock qubit.

On neglecting depolarization—i.e., in the limit �ω→ 0—Eq. (5.111) reduces
to

w(∞)= 2π |gς |2
[
N + |βN+1|2

]
δ(ω0 −ω), (5.112)

thus, the resonance line is not shifted.
When the incident field contains the only photon state, the substitutions

βN+1 → 0 and βN → 1 (or βN+1 → 1 and βN → 0) must be carried out in
Eq. (5.111). The former case gives w(∞)∼ Nδ(ω0 − ω), whereas the latter case
leads to the identical expression with N→N + 1 substituted. Thus, single-photon
states are characterized by unshifted resonances just as when depolarization is ne-
glected; however, the resonance amplitudes are quite different.

The foregoing analysis demonstrates that, in general, two spectral lines are
present in the effective scattering cross section. One of these lines has the fre-

Figure 5.16 Fine structure of the electromagnetic response of a QD illuminated by quan-
tum light. For the depicted cases of absorption and emission, the weighting coefficients βN
and βN+1 were chosen differently. (Reprinted with permission from Ref. 57, © 2002 The
American Physical Society.)
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quency of the exciton transition, while the other is shifted owing to the induced
depolarization of the QD.

The shifted line is due to macroscopic polarization of the QD. This conclusion
follows from using Eq. (5.108) in Eq. (5.95) to get

Pvx = Re

{ |µ|2
h̄VQD

〈Ê〉 [e
−iωt − e−i(ω0+�ω)t ]

ω0−ω+�ω

}
, (5.113)

where 〈Ê〉 = −2h̄β∗N βN+1gς

√
N + 1/µ in accordance with Eq. (5.104). As

Eq. (5.113) is analogous to Eq. (5.83), one can conclude that the shifted line is re-
lated only with the classical polarization. In contrast, the unshifted line is due to the
quantum nature of the electromagnetic field. Indeed, the classical approach implies
that the scattering cross section is completely determined by the QD macroscopic
polarization, as shown in Sec. 5.6.3.

Since w(t) = d|A|2/dt for classical light, Eq. (5.84) gives w(∞) ∼ δ(ω0 +
�ω − ω). Thus, the quantum nature of the electromagnetic field gives rise to an
electromagnetic response that is not related to the media polarization, but is condi-
tioned by the field eigenstates with a fixed number of photons. Spontaneous emis-
sion is an example. The key result of this section is that electromagnetic field states
with fixed and fluctuating numbers of photons react differently to the local fields.
The former states do not “feel” the local fields, while the latter ones demonstrate a
shift of resonant frequency.

5.7.5 Observability of depolarization

The basic physical result in this section thus far has been the prediction of a fine
structure of the absorption (emission) line in a QD interacting with quantum light.
Instead of a single line with a frequency corresponding to the exciton transition
ω0, a doublet appears with one component blue-shifted or red-shifted by �ω as per
Eq. (5.80). This fine structure is due to depolarization of a QD and has no analog in
classical electrodynamics. The value of the shift depends only on the geometrical
properties of a QD, while the intensities of components are completely determined
by statistics of the quantum light. In the limiting cases of classical light and single-
photon states, the doublet reduces to a singlet, which is shifted in the former case
and unshifted in the latter. A physical interpretation of the depolarization effect can
be given by analogy with the k · p theory of bulk crystals utilizing the concept of
the electron-hole effective mass.57

The shift can be estimated using well-known data for QDs. To incorporate a
host media, Eqs. (5.80) and (5.44) are subjected to the substitutions of Eq. (5.61);
i.e.,

�ω= πÑx

τ VQD

(
c√

εhω0

)3

. (5.114)
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For a spherical InGaAs/GaAs QD (Ñx = 1/3) of radius RQD 
 3 nm, when εh =
12 and radiation lifetime6 τ

(0)
sp 
 1 ns, Eq. (5.114) yields h̄�ω 
 1 meV at the

wavelength λ= 1.3 µm. This value correlates well with a theoretical estimate,130

and is of the same order of magnitude as polarization-dependent splitting.51,52 Note
that the Bohr radius for such QDs is about 10 nm, so that the strong confinement
approximation is valid.

A recent low-temperature measurement of the QD dipole moment131 gives
τ

(0)
sp 
 0.05 to 0.15 ns; however, the lateral size of that QD is much larger than

its thickness and the Bohr radius. Since Nx → 0 in this case, we do not predict an
observable depolarization shift for such QDs.

For experimental detection of the predicted fine structure, the value h̄�ω

must exceed the linewidths of the doublet components; i.e., �ω � �
(0)
sp /2 and

�ω� �hom/2, where �hom is the homogeneous broadening of the spectral line
due to dephasing. As follows from Eq. (5.114), the first inequality is fulfilled
at Nx � (2π)2VQD/λ3—i.e., for any realistic QDs of arbitrary shapes. Analysis
shows that the exciton-phonon interaction determines the �hom magnitude. Re-
cent low-temperature (T = 20 to 40 K) measurements give33,132,133 h̄�hom ∼ 1 to
20 µeV, while a similar estimate follows134 from calculations at T = 77 K. Thus,
at low temperatures, the predicted value of the shift turns out to be sufficiently large
to be measurable.

At room temperatures, the quantity h̄�hom grows to between 0.2 and
1 meV.6,133,134 Then, line broadening may result in overlapping of the doublet
components. Even so, local-field effects are important for adequate prediction of
the spectral lineshape of a QD illuminated by quantum light.

As stated earlier, the depolarization shift has opposite signs for absorptive and
inverted exciton levels. This property of QDs exposed to classical light has been
elucidated on the basis of classical electrodynamics.51,121 Results obtained for
classical light are often extended to quantum light by using the concept of Ein-
stein coefficients.123 Such a transformation applied to single-photon states, how-
ever, leads to a paradox: the energies of absorbed and emitted photons differ by
2h̄�ω. On the contrary, in accordance with Sec. 5.7.3, the single-photon processes
are insensitive to the depolarization field, so that the spontaneous emission and
absorption of a single photon occur at the same resonant frequency ω0. The depo-
larization shift occurs only in QDs exposed to light with a fluctuating number of
photons (classical light is the limiting case of such states of electromagnetic field).
In that situation, the energy defect 2h̄�ω can physically be interpreted as follows:
the defect 2h̄�ω is stipulated in the total nonclassical Hamiltonian of Eq. (5.90)
by the term �H in Eq. (5.68). This equation describes the electromagnetic interac-
tion of an oscillating electron-hole pair. In QED, that interaction is transferred by
a virtual photon with energy h̄�ω, which is extracted from the external field and
returns randomly. Obviously, such an interaction mechanism is impossible in ex-
ternal fields with a fixed number of photons, such as the Fock states; therefore, the
depolarization field is not excited in QDs exposed to Fock states and, consequently,
the depolarization shift does not then exist.

Downloaded from SPIE Digital Library on 18 Jun 2012 to 58.97.130.72. Terms of Use:  http://spiedl.org/terms



194 Sergey A. Maksimenko and Gregory Ya. Slepyan

5.8 Concluding remarks

This chapter ranged over several linear and nonlinear electromagnetic problems
and associated issues of electron transport through carbon nanotubes, which are
quasi-1D nanostructures. QED as applied to these nanostructures was also formu-
lated and used for consideration of atomic spontaneous emission near a CN and of
local-field contribution in the quantum optics of QDs.

The choice of problems and methodology presented here were dictated by the
following reasoning: first, stress was laid on the close connection between tra-
ditional problems of classical electrodynamics of microwaves and new problems
arising from technological progress in synthesis and application of nanostructures.
Such a connection enables us to extend to nanostructures the rich experience and
mathematical approaches that are known well in the classical electrodynamics
community. Second, the chapter demonstrated the peculiarities of electromagnetic
problems in nanostructures irreducible to problems in classical electrodynamics
due to the complex conductivity law and pronounced field nonhomogeneity.

While CNs and QDs are nice examples to demonstrate the correctness of both
ideas, the chosen methodology can be applied to all kinds of nanostructures. Cer-
tainly, this chapter touched on only a restricted set of problems, a set that is far from
being complete. It shows, however, that the range of problems is very wide and that
the methods and techniques of traditional electrodynamics (linear, nonlinear, and
quantum) can be successfully adapted to nanostructures.
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a 3b/2h̄

a1,2 lattice basis vectors

a
†
qν and aqν electron creation and annihilation operators

b= 0.142 nm interatomic distance in graphene
b̂† and b̂ creation and annihilation operators for electron-hole

pairs
c speed of light in free space (i.e., vacuum)
c

†
k and ck photon creation and annihilation operators

e electron charge
ez unit vector along the CN axis
E electric field
Ê electric field operator
F (θ, θ0) edge-scattering pattern
Fc,v(pz, s) equilibrium Fermi distribution functions in conduction

and valence bands
Gαβ components of the classical dyadic Green’s function

G
(0)
αβ components of the classical free-space dyadic Green’s

function
G(ret)(r, t) retarded Green’s function

H
(1,2)
l (·) cylindrical Hankel functions of the first and second

kinds
H magnetic field
Ĥ magnetic field operator
h wave number of the surface wave
H0 Hamiltonian of carrier motion
i

√−1
Il(·) modified cylindrical Bessel functions of the first kind
I (r, t) spontaneous emission intensity
Ĵext external current operator
Ĵ ns

z axial noise current operator
JN (·) Bessel functions
jz surface axial current density
k free-space wave number
kB Boltzmann constant
Kl(·) modified cylindrical Bessel functions of the second

kind
lCN CN length
l0 parameter to characterize spatial dispersion
(m, n) dual index to characterize CNs
m0 electron mass
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n unit vector along the exterior normal to the CN surface
N depolarization diadic
P̂(r, t) the polarization single-particle operator
p π -electron quasi-momentum
pF π -electron quasi-momentum at the Fermi level
Pl(θ) far-zone scattered power density
px,y,z projections of the quasi-momentum
r position vector
rc position vector of QD geometrical center
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t time
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V QD volume
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w(t) transition probability
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bands
β complex-valued slow-wave coefficient
βN complex-valued Fock-qubit coefficients
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�r radiative spontaneous decay rate
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�
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εc charging energy
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�=
st/ω1 dimensionless parameter to characterize pumping field
strength

λ= 2π/k free-space wavelength
µch chemical potential
µ dipole moment
!e scalar Hertz potential
τ relaxation time
τsp spontaneous radiation time

τ
(o)
sp spontaneous radiation time in free space

θ0 angle of propagation of the cylindrical wave in a CN
θCN geometric chiral angle of a CN
(ρ, ϕ, z) circular cylindrical coordinate system for any CN
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ρqq ′ elements of the density matrix
σzz(ω) axial conductivity of the CN
 electron wave function in CN
 q Bloch function
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ω1 angular frequency of the pump field
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 normalization volume

st angular Stark frequency
h̄= 1.05459× 10−34 J s Planck constant
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6.1 Introduction

From the time they were pioneered several decades ago, atomistic computer simu-
lation methods such as molecular dynamics (MD) and Monte Carlo (MC) have led
to great strides in the description of materials.1 The limitation of atomistic meth-
ods to simulating systems containing a small number of particles is a pathological
problem in spite of continuous progress in pushing the limit toward systems of ever
increasing sizes.2 System size is an especially critical issue when one desires a high
degree of accuracy in modeling the interatomic forces between the atoms constitut-
ing the system with first-principle atomistic simulation approaches.3 While small
system size is an issue for atomistic simulations of bulk materials, the possibility of
simulating small systems provides fresh opportunities for scientific advances in the
field of nanomaterials. In contrast to modeling bulk materials, atomistic computer
simulations could greatly speed up the development of materials at the nanoscale.
Nanomaterials exhibit sizes intermediate between those of isolated atoms, mole-
cules, and bulk materials with dimensions scaling from several to hundreds of
nanometers. Such systems are ideal for computational studies using MD or MC
methods, because these simulations can be done at the realistic size limit, imparting
them with predictive capabilities. Therefore, nanomaterials offer a fertile ground
for contributions from atomistic computer simulations.

There is already extensive literature on atomistic computer simulations of
nanoscale systems; it is not our intention to present an exhaustive review of
such studies. A few illustrative examples include: MD simulations of carbon
nanotubes,4–7 fullerenes,8,9 nanoclusters of polymers,10 and a plethora of nanos-
tructures: nanorod, nanoindentation, nanomesa, and nanowire.11–14 Self-assembly
is regarded as an extremely powerful approach in the construction of nanoscale
structures. Reviews on MC simulation studies of self-assembling processes in
aqueous media have appeared in the literature recently.15,16 MD and MC have also
been extensively employed to simulate the formation of self-assembled monolay-
ers on solid substrates.17–20

MD and MC methods find their origin in classical statistical mechanics.21 Pro-
vided a model for the interactions between the atomic constituents of some system
(for instance, in the form of interatomic or intermolecular potentials that describe
the energy of the system as a function of its microscopic degrees of freedom) ex-
ists, one can sample deterministically (MD) or stochastically (MC) the microscopic
states of the system. The microscopic degrees of freedom usually consist of the set
of positions and momenta of the particles. The original intent of MD and MC is,
once equilibrium is achieved, to use the concepts of temporal averaging22 (MD) or
statistical averaging23 (MC) over the sampled microscopic states to calculate the
properties of a macroscopic system. This calculation necessitates that the system
studied satisfies two hypotheses; namely, the long-time limit and the thermody-
namic limit.

The former requires that there must exist macroscopic states of the system for
which the macroscopic state variables do not vary, although the microscopic de-
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grees of freedom may undergo considerable variations. The long-time limit hy-
pothesis thus implies that the system does not evolve macroscopically on a time
scale large compared to the time scale of microscopic processes. This hypothesis
leads into the concepts of ensembles. An ensemble consists of a large collection
of macroscopically identical systems that are different in their microscopic states.
Ensembles are therefore a construct of the mind that enables the calculation of
statistical averages. The most common ensembles are:

• The microcanonical ensemble [constant energy (E), volume (V ), and num-
ber of atoms (N) for a monoatomic system or number of atomic species (Ni)

for multicomponent systems];
• Canonical ensemble [constant temperature (T ), V and N ];
• Isothermal-isobaric ensemble [constant T , pressure (P ), N ]; and
• Grand canonical ensemble [constant T , V , and chemical potential (µ)].

The thermodynamic limit hypothesis supposes that (1) the linear dimensions
of the system are large compared to the scale of the constitutive elements (for
instance, all spatial fluctuations must be included in the description of the system
even if their length diverges) and (2) the edges or surface effects can be neglected.

A lot of effort was put into MD and MC methods to satisfy the two hypotheses,
including the development of numerous thermostats to maintain the temperature
of a system constant, and the application of appropriate boundary conditions such
as periodic boundary conditions to mimic bulklike behavior. Moreover, atomistic
computer simulation methods have also been used to study material systems be-
yond these limits. MD and MC simulations have demonstrated usefulness in un-
raveling the structure and properties of surfaces and interfaces.24 Steady-state non-
equilibrium molecular dynamics (NEMD) methods have enabled the calculation of
nonlinear transport properties.25 Other nonequilibrium processes using stochastic
transition based on reaction/transition rates such as reaction kinetics,26 nucleation
and growth,27 and growth and transport of biological nanostructures28 have been
simulated within the framework of kinetic Monte Carlo approach.

It is clear that most nanoscale systems (or most processes involving nanos-
tructures) will not satisfy the thermodynamic and the long-time limits. Similar to
experimental nanotechnology research and development that not only require ma-
nipulation and processing of nanoscale structures but also integration into larger
systems, an atomistic computer simulation of a nanoscale system must address not
only the simulation of the individual nanostructure but also its interactions with
larger scale environments. A simple example of this integration is the coupling be-
tween a nanostructure and a thermostat in isothermal MD simulations. Models of
physical, chemical, and biological systems at the nanoscale based on multiparticle
simulations ought to address the issues related to their coupling to systems with
spatial and temporal scales that exceed those of the nanostructure itself.

The aim of this chapter is, after presenting a brief review of several represen-
tative simulation methodologies, to illustrate with specific examples some of the
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issues relevant to atomistic computer simulation of nanoscale systems. Particular
attention is paid to coupling systems with vastly different spatial scales and/or time
scales. Several case studies are presented illustrating spatial and temporal scaling
issues, namely, (1) interfacing an individual nanoscale system to “macroscopic”
thermostats in MD simulations; (2) bypassing the hierarchy in relaxation times
for the simulation of self-assembly of polymer surfactants with the MC method;
(3) obtaining dynamical information from kinetic MC simulation of a coarse-
grained biological nanostructure; (4) bridging simulation methodologies with dif-
ferent spatial scales (interfacing a small MD system to a larger MC system); and
(5) coupling a small MD simulation to continuum mechanics.

6.2 Determininistic atomistic computer simulation
methodologies

6.2.1 Microcanonical molecular dynamics

A molecular dynamics investigation consists of numerically solving the classical
equations of motion of a set of interacting particles. The solution results in the
trajectory of the system, that is, the temporal evolution of the positions and the
momenta of all of the particles. The physical description of the system is made
via a Hamiltonian that is written as the sum of kinetic energy and potential en-
ergy functions. The kinetic energy is typically a sum of quadratic functions of the
particles’ momenta. The potential energy is usually a function of the particles’ po-
sitions. A simple formulation for the Hamiltonian of a system of N interacting
identical particles is given by

H ({p}, {r})=
N∑

i=1

p2
i

2m
+ V ({r}), (6.1)

where {p} and {r} stand for the momenta and positions of the N particles
in some Cartesian coordinate system; i.e., {p} = {p1, p2, . . . , pN } and {r} =
{r1, r2, . . . , rN}. The function V can be derived from first principles or expressed
in the form of semiempirical or empirical functions; some illustrative examples of
such functions will be given in Sec. 6.2.4. By a “particle,” one understands not
only a physical object such as atoms or molecules, but also a pseudo-particle or
any other nonphysical object that may be needed as part of the physical description
of the system studied. For instance, to achieve isothermal conditions, artificial de-
grees of freedom may be added to a physical Hamiltonian (see Sec. 6.2.2.). In the
simplest form of MD, the trajectories conserve the Hamiltonian (energy) and the
number of particles.

Additional boundary conditions are often imposed on the simulated system.
Depending on these conditions, the trajectories may conserve either volume or
pressure/stress. Free-boundary conditions enable the system of particles to expand
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freely and therefore achieve constant pressure/stress conditions. One of the sim-
plest forms of MD simulations is conducted at constant energy with a constant
number of particles, and uses fixed periodic boundary conditions (PBCs) to main-
tain the volume constant. When imposing periodic boundary conditions, the po-
tential energy function V includes the position of the particles in the periodic im-
ages of the simulation cell. The intent of PBCs is to mimic the behavior of a bulk
material with the simulation of a computationally tractable small system. The ar-
tificial periodicity reduces free-surface effects that are inherent to small systems.
With PBCs the local environment of particles at the edges of the simulation be-
comes bulklike. PBCs, however, impose unrealistic correlations in the simulated
system for distances exceeding half of the shortest edge of the simulation cell. As
noted previously, PBCs may not be suitable for the simulation of nanoscale systems
where surface effects are an integral part of their behavior.

To solve numerically the equations of motion [Eq. (6.1)], time is discretized.
The finite but small integration time step is typically a small fraction of the time
necessary for one atomic vibration, typically on the order of 1 fs. Numerous nu-
merical methods are used for the temporal integration of the coupled equations
of motion. Some methods such as the leap-frog approach29 offer the advantages
of simplicity and low memory requirement, but entail the drawback of a small
time step for accuracy. Other higher-order methods, such as the predictor-corrector
method, allow for larger time steps but necessitate larger memory allocations as
well. Issues that must be addressed in the choice of a numerical time integrator
relate to the conservation of the total energy in a microcanonical ensemble MD. It
is not the objective of this chapter to present these numerical methods in any detail,
and we refer the reader to several books on the subject.30–33

6.2.2 Canonical ensemble molecular dynamics

Isolated systems conserve energy. Nanoscale systems are rarely isolated and are
often in thermal contact with some environment that may act as a heat bath. Under
such conditions, the nanosystem has to be modeled under isothermal conditions.
The simulation of the system of interest including its surroundings, both at the
atomic level, becomes quickly a terrifying problem due to the very large number
of degrees of freedom required simply to model the surrounding environment.

The goal of isothermal MD (i.e., MD in the canonical ensemble) is reduction-
ist. That is, canonical ensemble MD attempts to couple the atomistic degrees of
freedom of the system of interest to a thermostat represented by a small number of
variables only. Energy is a constant of motion in the microcanonical ensemble MD.
In the canonical ensemble, the equipartition theorem establishes a relationship be-
tween the temperature of the system and its kinetic energy.21 The total energy of
the system fluctuates in an isothermal MD while the kinetic energy should become
a constant of motion. Any isothermal scheme must satisfy the requirement that a
time-averaged property computed along a trajectory from an isothermal MD must
equal its canonical ensemble average.
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In this section, we will focus on illustrating five different thermostats, namely,
the Andersen thermostat,34 the momentum rescaling method,35 Hoover’s con-
straint method,36 the Nosé-Hoover thermostat,36,37 and the chain of thermostats.38

Andersen’s thermostat is stochastic. The system is coupled to a heat bath rep-
resented by stochastic forces that act on randomly selected particles. The collision
effectively occurs by drawing new particle velocities from a Maxwell–Boltzmann
distribution according to the desired temperature. Between collisions, the equations
of motion are those of a constant energy MD. The Andersen thermostat produces
the canonical distribution. The drawback of this method is that the dynamics is not
continuous with well-defined quantities (such as energy and momentum).

The momentum rescaling method is an early primitive thermostat based on the
equipartition relation. This relation states that the kinetic energy of a system of N

particles is related to the temperature T through

N∑
i=1

p2
i

2m
= 3

2
NkBT , (6.2)

where kB is the Boltzmann constant. The momenta of all of the particles are
rescaled at any small interval of time by the factor

√
Td /Ta , where Td and Ta are

the desired and actual temperatures, respectively. The momentum rescaling method
does not reproduce the canonical distribution.

The constraint method is based on non-Newtonian dynamics. The equation of
motion for the ith particle takes the form∗

r̈i = Fi

m
+ αṙi, i ∈ [1, N ]. (6.3)

From the constraint that the kinetic energy does not fluctuate (i.e., its time deriva-
tive is zero) follows the damping factor

α =−

N∑
i=1

ṙi .Fi

N∑
i=1

mṙ2
i

. (6.4)

The equilibrium properties of this isothermal system have been shown to be those
of the canonical ensemble.39

Deterministic isothermal molecular dynamics can be performed with both the
Nosé-Hoover thermostat and Nosé-Hoover chain of thermostats. We first consider
the Nosé-Hoover thermostat. For each component of the position and momentum

∗Throughout the chapter a dot over a variable indicates differentiation with respect to time.
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vectors, the following set of dynamical equations defines the Nosé-Hoover dynam-
ics:

ṙi = pi

m
, i ∈ [1, N ],

ṗi = Fi − pi

pη

Q
, i ∈ [1, N ],

ṗη =
∑

i

p2
i

m
−NkBT ,

η̇ = pη

Q
.

(6.5)

The dynamics of the thermostat degree of freedom η is driven by the imbalance be-
tween the actual kinetic energy and the desired kinetic energy (through the desired
temperature). Here Q is a mass associated with the thermostat degree of freedom.

The Nosé-Hoover chain of thermostats couples the particles to a Nosé-Hoover
thermostat which, in turn, is coupled to a second thermostat coupled to a third one,
and so on, up to some nth thermostat. The n thermostats form the so-called chain.
The dynamics of the Nosé-Hoover chain is driven by the following equations:

ṙi = pi

m
, i ∈ [1, N ],

ṗi = Fi − pi

pη1

Q1
, i ∈ [1, N ],

ṗη1 =
[∑

i

p2
i

m
−NkBT

]
− pη1

pη2

Q2
,

ṗηj
=

[
p2

ηi−1

Qj−1
− kBT

]
− pηj

pηj+1

Qj+1
,

ṗηn =
[

p2
ηj−1

Qn−1
− kBT

]
,

η̇j =
pηj

Qj

.

(6.6)

The Nosé-Hoover and Nosé-Hoover chain of thermostats produce the proper
canonical distribution under specific conditions. Some of these conditions may not
be satisfied in the simulation of nanoscale systems. There are two issues to address.
One relates to the ergodicity of the equations of motion. The other relates to the
conditions for achieving the canonical distribution once ergodicity is achieved.

We first address the problem of ergodicity. In a microcanonical ensemble the
trajectories of a system of particles {p, r} (i.e., the temporal evolution of the sys-
tem in the position and momentum space) must conserve energy. As a side note,
the multidimensional space of positions and momenta of the particles is called
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the phase space. The condition of conservation of energy is written in the form
H ({p}, {r})=E = constant, and describes a hypersurface in phase space. The er-
godic hypothesis as applied to that system implies that, given an infinite amount of
time, the trajectory will cover the entire constant energy hypersurface. As a con-
sequence, the temporal average of some quantity will equal its statistical ensemble
average. For instance, the microcanonical trajectory of a 1D harmonic oscillator is
ergodic and describes an ellipse in the 2D phase space. For a system of particles
coupled to a Nosé-Hoover thermostat, the phase space includes the positions and
momenta of the particles and of the thermostat. Provided that the Nosé-Hoover
equations of motion are ergodic, the system constituted by the particles and ther-
mostat should evolve on the constant generalized energy hyper surface:

H ({p}, {r}, η, pη)=
N∑

i=1

p2
i

2m
+ V ({r})+ p2

η

2Q
+ dNkBT η = constant, (6.7)

where d is the dimensionality of the system.
The rationale for the coupling of the system to the thermostat is to allow the

particles to explore a larger region of phase space. For instance, in the case of a har-
monic oscillator, the intent is to explore phase space beyond its elliptic trajectory.
The Nosé-Hoover equations of motion, however, do not guarantee ergodicity of the
trajectory and therefore do not guarantee the canonical distribution. The harmonic
oscillator is an example of such a pathological example.36 This problem can be al-
leviated with the Nosé-Hoover chain of thermostats. This chain of thermostats may
make the trajectory sufficiently chaotic to explore a larger region of phase space
and therefore approach ergodicity.

Equation (6.6) conserves the total energy of the Nosé-Hoover extended system,
namely,

H ({p}, {r}, η, pη)=
N∑

i=1

p2
i

2m
+ V ({r})+

n∑
k=1

p2
ηk

2Qk

+ dNkBT η1 +
n∑

k=2

kBT ηk

= constant. (6.8)

The set of equations (6.6) cannot be derived from a Hamiltonian. Using the prin-
ciples of non-Hamiltonian statistical mechanics, Tuckerman and Martyna40 have
shown that one requires conservation laws in addition to Eq. (6.8) to yield trajec-
tories of the system of particles that reproduce the canonical distribution. If the
system of particles is subjected to no external forces, i.e.,

∑N
i=1 Fi = 0, then there

are d additional conservation laws (i.e., one can define d quantities whose time
derivatives are zero).

The Nosé-Hoover equations of motion, Eqs. (6.5), also describe non-Hamil-
tonian dynamics. In that case, the canonical distribution is obtained if there is
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only one conservation law [i.e., Eq. (6.7)]. In absence of external forces, the Nosé-
Hoover trajectories do not sample the phase space according to the canonical distri-
bution unless one imposes that the net momentum be null:

∑N
i=1 pi = 0. We refer

the reader to Frenkel and Smit33 for a detailed discussion of these conditions.
In summary, the MD simulation of a nanoscale system, under isothermal condi-

tions with the Nosé-Hoover thermostat or chain of thermostats, requires that special
attention be paid to the presence or absence of external stimuli (forces) to gener-
ate the appropriate canonical distribution. Although stochastic thermostats such as
Andersen’s may be more forgiving, deterministic approaches are often preferred
in that they are time-reversible and enable direct comparison of results generated
by different investigators (if the same initial conditions are used). Additional care
is also required to verify that the MD trajectories are ergodic. For small systems
(e.g., 1D harmonic oscillator), the Nosé-Hoover trajectories are not ergodic. Other
systems that are prone to nonergodic behavior include stiff systems. Systems of
this type that are relevant to nanoscale science would be polymeric chains with
stiff harmonic interactions41 or quantum systems described classically by discrete
path integrals.42 The separation of time scale in such systems gives rise to noner-
godic trajectories that do not sample the canonical phase space.43 Some solutions
to this problem involve for instance periodic refresh of the velocities41 or decom-
position into normal modes with multiple time scale integration techniques and
thermostating with a Nosé-Hoover chain of thermostats.44 To achieve the canon-
ical distribution, some authors have pushed thermostating to the extreme limit of
one Nosé-Hoover chain of thermostats per degree of freedom.44,45

6.2.3 Other ensembles

The conventional MD simulation using periodic boundary conditions is performed
under constant volume conditions. As mentioned before, it is trivial to simulate
a system of particles at constant pressure (P = 0) by employing free-boundary
conditions as may be true for numerous individual nanoscale systems. However,
several constant-pressure MD schemes compatible with periodic boundary con-
ditions have been proposed. At constant pressure, the volume of a system of N

particles fluctuates. Andersen34 replaced the atomic coordinates by scaled atomic
coordinates. The scaling factor becomes an additional dynamical degree of free-
dom. Andersen interpreted the scaling factor as the volume of the system. The
scaled coordinates are given as the ratio of the coordinates to a length given by the
cubic root of the volume. A change in volume results in a homogeneous scaling of
the particles’ positions. The new degree of freedom possesses its own mass and is
associated with a new momentum and kinetic energy. This mass is artificial. It is a
measure of the inertia of the volume and controls its rate of change. The potential
energy can be visualized as the mechanical work an external pressure would do on
the volume. The dynamics of the volume is driven by the imbalance between an
applied external pressure and the internal pressure. This latter quantity is related
to the particles’ positions and interatomic forces through the so-called Virial ex-
pression.21 In absence of thermostats, the equations of motion of the particles and
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of the volume conserve a quantity closely related to the enthalpy of the system,
H =E + P V . The trajectories sample the (N, P, H ) ensemble.

Parrinello and Rahman46 extended Andersen’s scheme to nonuniform scaling
of the simulation cell. Here changes in the orientation and length of the edges of
the simulation cell are possible. This allows fluctuations not only in the volume
but also in the shape of the cell, thereby enabling the study of crystal structural
phase transformations. Nine additional degrees of freedom are necessary to de-
scribe the dynamical shape and size of a 3D simulation cell. Each extra degree
of freedom possesses a momentum. The inertia of the borders of the simulation
cell is therefore characterized by a second-order mass tensor. The potential energy
associated with the borders of the cell is a measure of the elastic energy in the
limit of linear elasticity. The dynamics of the cell are driven by the imbalance be-
tween an external stress tensor (with hydrostatic and nonhydrostatic components)
and the internal stress tensor. Parrinello and Rahman’s trajectories conserve a gen-
eralized enthalpy. The combination of isobaric and isothermal conditions was also
undertaken by Andersen,34 Parrinello and Rahman,46 as well as, more recently,
Tuckerman and Martyna.40 Other attempts have been made to develop formalisms
in other ensembles, including the grand canonical ensemble.47

6.2.4 Interatomic potentials

Atomistic computer simulation methods (MD and MC) require a description of the
interparticle interactions to yield a microscopic model of the system. Accurate MD
or MC results are contingent on the degree of realism of the microscopic descrip-
tion. The information about interparticle interactions is contained in the potential
energy function V . For continuous potential functions, the force field acting on
a given particle is simply equal to the negative of its gradient. A vast collection
of microscopic models has been developed over many years. Early microscopic
models range from discontinuous interactions (such as in the hard sphere model
or square-well potential model) to pairwise additive continuous interatomic poten-
tials of the Lennard-Jones, Buckingham and other variant forms.48 Pair potentials
were also developed for ionic crystals49 and metals.50 The development of micro-
scopic models beyond pair potentials made it possible to describe more realistic
systems.51 Examples of early empirical many-body potentials for describing cova-
lent bonds include the Stillinger-Weber potential for condensed phases of silicon,52

Rahman-Stillinger potential for water,53 and Tersoff’s potential for carbon.54 One
particularly successful example of a Tersoffian potential for hydrocarbons is the
reactive empirical bond-order potential developed by Brenner.55,56 This type of
potential can describe chemical reactivity, that is, chemical processes that involve
bond breaking and bond forming.57 Molecular mechanics nonreactive potential
functions for organic substance based on harmonic descriptions of covalent bond
stretching and bending are also available.41 Charge transfer plays an important role
in covalent bonding, especially near surfaces, interfaces and defects. Alavi et al.
proposed a charge-transfer molecular dynamics that is conservative.58 This model
was applied to the study of silica containing bond-breaking ions.
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Many-body potentials derived with the embedded-atom method (EAM)
have been very successful at modeling the structure, properties and defects of
metals.59,60 EAM potential functions incorporate the energy associated with the
action of embedding an atom within the electron cloud of neighboring atoms plus
repulsive pair potential between the atoms. EAM potentials have had great suc-
cess for face-centered cubic (FCC) metals. Angle-dependent forces are needed
to explain the behavior of non-FCC metals. To that effect a modified EAM
(MEAM) has been used with success.61 MD simulations of metals have also been
performed with semiempirical potentials based on a quantum mechanical tight-
binding method.62,63 Ab initio MD simulation is becoming a powerful alternative
to atomistic simulations with empirical or semiempirical potential functions. This
method requires no input potential model and solves simultaneously for the clas-
sical dynamics of atoms and the electronic structure. For instance, the method of
Car and Parrinello unifies MD and density-functional theory.64 The computational
overhead due to the additional electronic degrees of freedom limits this kind of
simulation to systems significantly smaller than those accessible with classical
MD using empirical or semiempirical interatomic potential functions.

6.2.5 Thermostating a buckyball: an illustrative example

In this section, we illustrate the application of MD and, in particular, the effect of
deterministic thermostats on the dynamical and structural behavior of a nanoscale
system, namely, a fullerene buckyball. Specifically, the thermal decomposition of
a C60 molecule is studied with the temperature of the molecule being controlled
by an external thermostat. Kim and Tomanek examined the high-temperature be-
havior of fullerenes, which involves a consequent distortion, and the ultimate frag-
mentation of the molecule as the temperature is increased.9 Their work included
a detailed MD simulation study of the “melting” of the molecules of three pro-
totype fullerenes, namely, C20, C60, and C240. The force calculation was based
on a linear combination of atomic orbital formalisms (involving the parameteri-
zation of ab initio local density functional results) for structures as different as
C2, carbon chains, graphite, and diamond.9 On heating the molecule, many phases
were identified at elevated temperatures. The system evolved from a buckyball to
a “floppy-like” phase, then to a pretzel-like phase with 3D structure of connected
carbon rings, and finally to carbon chain fragments. The temperature of the system
was controlled using a Nosé-Hoover thermostat.

Following the same lines, we examine the thermal decomposition character-
istics of a buckyball using the Tersoff’s potential to represent the interatomic
interactions.54 The Tersoff’s potential does not account for the different states of
hybridization of a carbon atom explicitly which leads to results that are slightly
different than the more realistic ab initio calculations of Kim and Tomanek. In
the Tersoff’s potential, the interatomic energy between any two neighboring atoms
(i and j ) is of the form: Vij = fc(rij )[fR(rij )+ bij fA(rij )]. In this expression, Vij

is the bond energy, fR(rij ) represents a repulsive pair potential, fA(rij ) represents
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an attractive pair potential associated with bonding, and fc(rij ) is a smooth cut-
off function. The Tersoff’s potential includes a many-body environment-dependent
bond order term bij . This term is associated with the attractive part (fA) of Vij and
describes the modulation of the two-body potential due to the presence of other
neighboring atoms—the k atoms. Also, bij is a measure of bond order and is a
monotonically decreasing function of the number of neighbors j of atom i (i.e.,
the coordination number of i).

A more important part of this example is to compare and contrast the effect of
the various thermostats on the thermal decomposition of the molecule. As pointed
out earlier in previous sections, the various thermostats maintain the tempera-
ture of the system through different means; and thus their effect on an extremely
small system could be dramatically different. On the other hand, the system could
be perfectly oblivious to the types of the thermostats. We test four deterministic
thermostats, namely, momentum rescaling, constraint method, Nosé-Hoover, and
Nosé-Hoover chain on the C60 molecule as the molecule is heated. In this study, the
MD simulations are in quasi-equilibrium, thus the effect of the thermostats on the
evolution of thermodynamic quantities such as internal energies can be evaluated.

Following closely the procedure adopted by Kim and Tomanek, the system ini-
tially at rest at 0 K is heated up systematically, with the system temperature ramped
up by 400 K for every 0.4 ps. The size of the time step used is 0.1 fs to ensure ac-
curate integration of the equations of motion of the system. A simple one-step
finite-difference Verlet method is used as the time integrator. Data is collected only
during the final 0.2 ps at each temperature and for each thermostat. Five different
runs (corresponding to different starting velocity distributions) are carried out to
ensure better statistics. The variations of the internal energy, coordination number,
and the atomic binding energy (ABE) are recorded as a function of temperature for
the different thermostat runs.

The C60 molecule consists of sp2 hybridized carbon atoms, each atom bonded
to three other carbon atoms. As the molecule is heated, it constantly changes shape
and finally fragments. Thus, in addition to the potential that governs the interatomic
interactions, the role of the external thermostat becomes crucial in evaluating the
fragmentation dynamics of the molecule.

Figure 6.1 represents the variation of the system temperature with time, for
four different thermostats. As is evident from Fig. 6.1, the thermostats control the
temperature efficiently, with no visible effect of the size of the system on any of
the thermostat’s ability to maintain the required temperature.

Next, we evaluate the average total energy of the system as a function of time
(or equivalently the system temperature), as shown in Fig. 6.2. The variation in the
energy for each case seems to follow very similar trends: a monotonous increase
in energy with temperature, with a significant change in slope around 6000 K. We
note that the velocity rescaling and the constraint methods differ significantly from
each other. The dynamics of the C60 molecule is practically the same when using
the Nosé-Hoover thermostat or the Nosé-Hoover chain of thermostats.

To follow the structural changes of the fullerene, the average coordination num-
ber of the atoms is also tabulated at every temperature. Figure 6.3 clearly shows
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Figure 6.1 Average temperature of C60 as a function of time for the four thermostats stud-
ied.

Figure 6.2 Average internal energy as a function of time for C60 thermalized with four dif-
ferent thermostats.

that the molecule starts to fragment once enough thermal energy is pumped into the
system, as readily seen in the steady decrease in the average number of neighbors
around 5500 K.

Also, from Figs. 6.2 and 6.3, it is obvious that the molecule completely frag-
ments around 7000 K. The trends for all thermostats seem to be very similar. How-

Downloaded from SPIE Digital Library on 18 Jun 2012 to 58.97.130.72. Terms of Use:  http://spiedl.org/terms



220 Pierre A. Deymier, Vivek Kapila and Krishna Muralidharan

Figure 6.3 Average atomic coordination as a function of temperature.

ever, as expected, it appears that the Nosé-Hoover approaches (single thermostat
or chain) and the constraint method lead to less fragmentation than the velocity
rescaling method.

These observations differ from the work of Kim and Tomanek. In their work,
they observed that the C60 molecule transformed initially into a “floppy” phase,
then into a pretzel phase, and finally fragmented. But in the present study, the
molecule started to uncoil around 5000 K and this continued until it fragmented at
7000 K. This was observed for all of the thermostats, leading to the conclusions
that (1) uncoiling and subsequent fragmentation was dictated by the nature of the
Tersoff’s potential, and (2) the dynamics of the thermostats have a minimal effect
on the high-temperature decomposition characteristics of the C60 molecule.

Finally, Fig. 6.4 represents the variation in the distribution of the coordination
number of the atoms as a function of temperature for a representative case, namely,
the Nosé-Hoover thermostat. All of the atoms are initially threefold coordinated,
but with increasing temperature there is a slight decrease in the number of three-
fold coordinated atoms and a subsequent increase in fourfold coordinated atoms.
This can be ascribed to the fact that the Tersoff’s potential is parameterized for sp3

carbon. At much higher temperatures, the uncoiling and the fragmentation of the
molecule can readily be correlated to the increase in twofold and onefold coordi-
nated carbon atoms.

Although the four thermostats used to thermalize a C60 molecule give results in
qualitative agreement, the Nosé-Hoover thermostat and the Nosé-Hoover chain of
thermostats provide consistency in the evolution of the internal energy and of the
structure of the nanocluster. Velocity rescaling, known not to generate the canon-
ical distribution, produces results differing significantly from the other three ther-
mostats studied. These observations of the structural changes taking place during
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Figure 6.4 Atomic coordination in the C60 cluster as a function of temperature. Temperature
is maintained with the Nosé-Hoover thermostat.

the heating of a fullerene differ from that of Kim and Tomanek.9 This difference,
however, may be assigned to the difference in interatomic potential. This example
illustrates the importance of choosing the appropriate methodology for coupling an
individual nanostructure to a “macroscopic” thermostat.

6.3 Stochastic atomistic computer simulation methodologies

6.3.1 Canonical Monte Carlo

MD simulations attempt to simulate the behavior of a system in real time by solving
the equations of motion. While such an approach is required for determining the
time-dependent properties such as diffusion, it may not be very well-suited compu-
tationally for determining time-independent properties. For example, the time step
in an MD simulation is approximately one to two orders of magnitude smaller than
the time for the fastest motion. In flexible molecules, such as hydrocarbon chain
molecules, the highest frequency vibrations are due to bond stretching. A C H
bond vibrates with the repeat period of approximately 10 fs. An interesting prob-
lem in the nanoscale simulations is the self-assembly of chain molecules of sur-
factants and other polymers in solution and on surfaces. The timescales for the
self-assembly of these molecules can range from several seconds to hours. Clearly,
special efforts would be needed to develop integration schemes allowing for larger
time steps for the investigation of self-assembly.

According to statistical mechanics, for an ergodic system, the time-averaged
properties are equivalent to statistical averages in an appropriate ensemble.21 An
alternative approach for calculating the time-independent properties in cases such
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as surfactant self-assembly is to calculate the ensemble averages without attempt-
ing to simulate the real dynamics of the system. The MC simulations are sto-
chastic techniques that generate a large number of states of the system and cal-
culate the thermodynamic properties as statistical ensemble averages. Historically,
the MC simulations were the first molecular simulations undertaken. Metropolis
et al.23 performed the first simulations of a liquid on the MANIAC computer at
Los Alamos National Laboratory.

In molecular simulations, we are interested in calculating the thermodynamic
properties of the system. As stated earlier, these properties are calculated as tem-
poral averages in the MD simulations and as statistical averages in the MC simu-
lations. The MC simulation samples a 3N -dimensional space (particle positions)
in contrast to a 6N -dimensional space (particle positions and momenta) by an MD
simulation. The momenta contribute only to an ideal gas term; and the deviations
from the ideal gas in MC simulations are calculated by the potential energy term
that depends only on the particle positions.33,65

According to statistical mechanics, any thermodynamic property A of a system
can be evaluated as30,33,65,66

〈A〉 =
∫

A({r})p({r}) d{r}, (6.9)

where p({r}) is the probability of occurrence of the configuration {r}. This prob-
ability depends on the potential energy of the configuration V ({r}) and is given
by

p({r})= exp[−βV ({r})]∫
exp{−βV [{r}]}d{r}, (6.10)

where β = 1/kBT . The integrals in Eqs. (6.9) and (6.10) are usually evaluated
numerically. The simple techniques of evaluating these integrals, such as the trape-
zoidal rule or Simpson’s rule,67 are prohibitive due to the large number of calcu-
lations involved. These integrals can be evaluated more effectively by employing
random sampling methods. In the simplest of these methods, the phase space is
explored by generating a large number of states randomly and the integrals in the
equation are replaced by the summations. Equation (6.9) then becomes

〈A〉 =

n∑
i=1

Ai({r}) exp[−βVi({r})]
n∑

i=1

exp[−βVi({r})]
, (6.11)

where n is the number of randomly sampled states “i.”
Simple random sampling often generates states that do not make significant

contributions to the sample averages. Metropolis et al.23 introduced the method
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of importance sampling that samples only the states having a Boltzmann factor
with an appreciable value. In this method, the states are generated by following
the Markov chain.66 Each successive state in the Markov chain depends only on its
immediate predecessor and has no memory of the previous states. This is important
as it provides a clear distinction between the MD and MC approaches. The MD
simulations follow the equations of motion and are connected in time, whereas
the Markov chain enables unphysical moves in MC simulations and can relax the
system much faster.

In practice, the importance sampling method is used frequently in the canonical
ensemble MC (constant N , V , T ). The implementation of the importance sampling
method involves the generation of an initial random configuration of the system.
The energy of the system in this initial configuration V0 is calculated as a function
of the positions of the particles. A new state is then generated by either a random
displacement of a randomly selected particle or by a random displacement of all of
the particles. The energy of the new state Vi is then calculated. The transition of the
system from state o→ i is always accepted if �V = Vi − V0 < 0. If the new state
i results in �V > 0, then the likelihood of the new state is based on a transition
probability. The transition probability is calculated as exp(−β�V ) and a random
number R is generated between 0 and 1. The new state is then accepted if the tran-
sition probability exp(−β�V ) > R. Mathematically, the acceptance probability
for the new configuration in the importance sampling method is expressed as

p =min
[
1, exp(−β�V )

]
. (6.12)

As with any other simulation technique, MC simulations with importance sam-
pling also have efficiency-related issues. An algorithm is often considered to be
efficient when approximately 50% of the moves are accepted. The acceptance rate
of the MC moves invariably depends on the maximum displacement drmax of the
particles allowed in a step. If the maximum displacement is too small, it results
in a large number of successful moves; however, the phase space is sampled very
slowly. In contrast, if the maximum allowed displacement is too large, it results in
high-energy overlaps and a large number of moves are rejected.

6.3.2 Grand canonical Monte Carlo

Grand canonical MC simulations are performed in an ensemble at constant
(µ, V , T ). These are particularly important in the studies of adsorption68–70 as
they enable the simulations of an open system (variable number of particles) at a
constant chemical potential. The thermodynamic properties in the grand canonical
ensemble are calculated by30,33,65

〈A〉 =

∞∑
N=0

�−3N

N ! exp(βµN)

∫



A({r}) exp[−βV ({r})]d{r}

ZµV T

, (6.13)
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where ZµV T is the grand canonical partition function given by

ZµV T =
∞∑

N=0

�−3N

N ! exp(−βµN)

∫



exp[−βV ({r})]d{r}, (6.14)

and

�= h

(2πmkBT )1/2
(6.15)

is the de Broglie thermal wavelength; 
 represents the phase space.
The trial moves for generating new configurations in the grand canonical en-

semble consist of particle displacement (as done with the canonical MC), parti-
cle addition, and particle annihilation. In the particle addition move, a particle is
inserted at a randomly selected position; and in the particle annihilation move,
a randomly chosen particle is annihilated. The acceptance probabilities for parti-
cle insertion (p{N → N + 1}) and particle annihilation (p{N → N − 1}) are as
follows:30,33,65

p(N→N + 1)=min

(
1,

1

�3(N + 1)
exp

{−β[µ− V (N + 1)+ V (N)]})
,

(6.16a)

p(N→N − 1)=min
(
1, �3N exp{−β[µ+ V (N − 1)− V (N)]}). (6.16b)

In the grand canonical MC method, a random configuration of the system is
generated initially. A particle is selected at random and then a move (particle dis-
placement, creation, or destruction) is selected at random. The particle displace-
ment follows the usual canonical MC method. That is, if the particle displace-
ment results in a lower energy, then the new configuration is accepted. If the
energy increases, then the move is accepted according to the transition probabil-
ity given by Eq. (6.12). For the particle-creation and particle-annihilation moves,
the energies for the new and old configurations are again calculated, and the
new configurations are accepted according to the transition probabilities given by
Eq. (6.16).

In the simple grand canonical MC methodology thus outlined, the probabili-
ties of particle creation and annihilation can become very small when simulating
dense systems. This is particularly true in the simulations of polyatomic molecules
such as alkanes and surfactants. Particle creation becomes difficult in a dense sys-
tem due to the high-energy overlaps with the neighboring particles, whereas the
particle removal from dense systems results in the unfavorable high-energy config-
urations. Siepmann and Frenkel71 introduced the concept of configurational bias
sampling schemes based on the Rosenbluth–Rosenbluth72 method to address this
problem.
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6.3.3 Lattice Monte Carlo

In the lattice MC method, the physical space is discretized on a 2D or a 3D lattice.
The atoms or molecules occupy these lattice sites and interact with each other via
nearest-neighbor pair potentials. Such lattice models greatly simplify the physical
description of the system and prove very useful for rapid sampling of phase space.
Although the lattice models are highly simplified, they still capture in many cases
the essential physics of the processes occurring at the molecular level.

Lattice models are particularly useful in the examination of systems composed
of long-chain polymer molecules. Wide ranges of time and length scales are re-
quired to adequately describe the behavior of polymers. The time scales range
from approximately 10−14 s (i.e., the period of a bond vibration) through seconds,
hours, or even longer, e.g., time for molecular diffusion and self-assembly. The
size scales range from angstroms to nanometers to micrometers (e.g., length of the
polymer to spatial extent of aggregates of molecules). The lattice models enable
spatial coarse-graining of these features. The MC methods enable various moves
without reference to their hierarchy of relaxation time. In the lattice MC method,
therefore, many states can be generated rapidly and analyzed.

In the lattice MC method of polymers or surfactants, the chain molecule is first
grown on either a 2D or a 3D lattice. The lattice model of polymer achieves the
coarse graining of the physical space by employing a grid, and the coarse graining
of the polymer molecule by using united atom models. The chemical groups (e.g.,
alkane groups) in the polymers are then represented as the vertices of the grids. The
generation of an initial random configuration of the system consists of the random
selection of a grid site, and a chemical group is placed on this site. The next bonded
group is placed on a randomly chosen nearest-neighbor lattice site. The process is
repeated until the entire chain has been grown. A self-avoiding random walk is
used in growing the chain.

After generating the initial random configuration, the new states are generated
by displacing the chain molecules on the grid. The lattice MC method provides
opportunities to employ several multi-time-scale moves in the simulations of chain
molecules. Examples of such moves include (in the order of increasing time scales)
the flip,73 reptation,74 global chain translation, and cluster moves.75 In the flip
move, a group in a kink position is selected and moved to a diagonally opposite grid
site. This small time-scale move results in a small change in the local conformation
of the chain molecule. In the reptation move, one end of the chain molecule is
selected at random and moved to a randomly selected empty nearest-neighbor site.
The rest of the groups in the chain move in the direction of this end group and
occupy the grid sites of their predecessors. The reptation move is therefore a long-
time-scale move and capable of moving the entire chain in one attempt. In global
chain translation, a chain is selected at random and moved to a different region
in the grid while maintaining its original conformation. This is a diffusion-related
move and has a very long relaxation time constant. In Fig. 6.5, the described moves
are illustrated. The original configuration of the chain molecule is represented in
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(a) (b)

(c) (d)

Figure 6.5 Lattice model of polymer: (a) original configuration, (b) reptation move, (c) flip
move, and (d) global chain translation.

Fig. 6.5(a). The configurations shown in Figs. 6.5(b) through 6.5(d) result from the
displacement of the chain molecules in the initial configuration of Fig. 6.5(a) using
the reptation, flip, or chain translation moves, respectively.

Some special moves are required when simulating the self-assembly of surfac-
tants. In the simulations of surfactants in which the chain molecules self-assemble
to make aggregates of different shapes and sizes (e.g., micelles), the evolution of
the system can become very slow if the simulation consists of solely the moves
described in the previous paragraph. In such situations, it becomes necessary to
employ moves such as cluster moves. A cluster can be defined as an assemblage of
polymer chains that have at least one chemical group in a nearest-neighbor site to
the group of a different chain. The cluster displacement move consists of random
selection of a cluster and its relocation.

6.3.4 Self-assembly of surfactants

An important example of nanostructure is provided by the self-assembly of sur-
factant molecules in solutions or on surfaces. The fact that surfactant molecules,
composed of hydrophobic tail groups and hydrophilic head groups, can aggregate
or self-assemble in an aqueous environment has been exploited in many diverse
areas of engineering and medical science in a variety of applications such as en-
vironmental, pharmaceutical, biological, and surface engineering.76–79 Depending
on their concentration and their geometry, surfactant molecules assemble in a spec-
trum of structures such as spherical micelles, cylindrical micelles, and membranes
(e.g., bilayers).
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MC simulation studies of surfactant solutions have been performed widely in
the past 15 years. These techniques are generally based on lattice models in which
a surfactant molecule is represented as a chain of chemical groups occupying cer-
tain grid sites on a 2D or 3D lattice. Extensive work has been done by Larson,80–84

showing that surfactant self-assembly can be achieved by MC simulations without
having to resort to any pre-assembled micellar structure or shape. Most of Larson’s
work has focused on three-component amphiphile-oil-water systems, and quanti-
tative predictions of the phase behavior have been made by using a temperature
integration method. By performing his simulations at different values of temper-
ature and concentration, Larson has shown the ability of these models to predict
self-assembly into lamellar, packed cylindrical, and spherical phases as well as
bicontinuous structures.

More recently, lattice surfactant systems were studied by grand canonical MC
(together with histogram-reweighting) techniques.75 Both amphiphilic molecules
of symmetric and asymmetric architectures were investigated. The osmotic pres-
sure and chemical potential/volume relationships were determined with respect to
temperature. The critical micelle concentration (CMC) was then determined as a
function of temperature from the osmotic pressure curve. The CMC is that con-
centration above which addition of surfactant molecules results essentially in the
formation of micelles.

Here we illustrate the lattice MC simulation of aqueous solutions of surfac-
tants in a canonical ensemble.85 The surfactant molecules are modeled as chains
of connected grid sites on a 2D square lattice. The surfactant molecules contain 12
hydrophobic tail groups and one hydrophilic head group. A lattice site unoccupied
by a head or tail group is assumed to be representing a solvent water molecule. For
the calculation of the energy of the system, a discretized version of the potential
energy function is used that captures the most essential features of the inter- and
intramolecular interactions. In the context of the simulations of surfactants, this
translates to the potential energy function of a form described by

V = (εWW · nWW+ εWT · nWT+ εWH · nWH+ εTH · nTH+ εTT · nTT+ εHH · nHH),

(6.17)
where W, H, and T in the subscripts represent the solvent (water), the surfac-
tant head group, and the surfactant tail group, respectively. The ε’s represent the
nearest-neighbor pair energies for the contacts, e.g., εWT is the energy of interac-
tion for a tail group having a solvent group in a nearest neighbor site. The n’s in
Eq. (6.17) represent the number of nearest-neighbor pairs of groups in the sub-
scripts. For convenience, the interaction energy for the solvent-solvent pair is set
as the origin of energy. The sign and magnitude of the other interaction energies
are expressed in reference to εWW = 0. Due to the hydrophobic nature of the tail
groups, the interaction energy for solvent-tail pair εWT > 0. For hydrophilic head
groups, the interaction energy for the head-solvent pair εWH < 0. In addition to
the short-range energies of Eq. (6.17), a model of a cationic surfactant (i.e., with
charged head groups) would account for Coulomb interaction between head groups
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via a long-range repulsive term. A detailed discussion on the selection of the mag-
nitude of the interaction energies (relative to the thermal energy kBT ) in the lattice
MC simulations of the surfactants and the effect of the energy models used on the
self-assembly behavior has been presented by Kapila et al.85

An initial configuration of the system is generated by growing N number of
chains on the lattice. The simulation then follows the usual importance sampling
MC algorithm of Eq. (6.12) using one or all of the moves described in Sec. 6.3.3.
Important insights on the thermodynamic stability of aqueous surfactant solutions
are gained in the self-assembly process by calculating the concentration of unag-
gregated surfactant molecules as a function of overall concentration of the surfac-
tants. In addition to thermodynamics data, structural information can be obtained
by, for instance, plotting the size distributions of surfactant aggregates. Such calcu-
lations permit the determination of important thermodynamic and structural quan-
tities such as the CMC and the aggregation number. Several MC studies have been
carried out for the measurement of the micellar properties: CMC, micellar size, mi-
cellar shape, aggregation number, and polydispersity. Brindle and Care,86 Care,87

and Desplat and Care88 have studied both 2D and 3D lattice models of binary mix-
tures of water-surfactant systems in a canonical ensemble. The cluster size distrib-
ution has been determined as a function of temperature and concentration. Beyond
the CMC, the cluster size distributions show a significant polydispersity; and a
peak in these distributions is taken as indicative of micelle formation.

Figure 6.6 illustrates the concentrations of unaggregated surfactants (mo-
nomers) as functions of the overall surfactant concentration obtained from 2D sim-
ulations of an ionic surfactant.85 The CMC of the system can be calculated from

Figure 6.6 Monomer concentration as a function of overall surfactant concentration.
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this plot as the concentration at which a line passing through the origin intersects
a line fitting the high-concentration data. Several definitions for the low concentra-
tion line have been employed, including those by Care86 (XC) and Israelachvili89

(XT ). The monomer concentration increases linearly with overall concentration
below CMC; that is, the aqueous solution of surfactants is polydispersed with very
few aggregates. At overall concentrations larger than the CMC, the monomer con-
centration plateaus and even decreases slightly. This indicates that, as monomers
are added to the solution, they do not remain dispersed but participate in the for-
mation of aggregates or micelles.

The detailed structure of a surfactant solution above the CMC is best illustrated
in three dimensions. We present some results on the MC simulation of a model
solution of cationic surfactants on a 3D cubic grid. The model and method are
similar to that of the 2D solution reported previously. The 3D model differs from
the 2D case in that the number of configurations available to a surfactant molecule
is significantly larger.

Figure 6.7 shows a snapshot of the clusters of surfactant molecules, and Fig. 6.8
presents the size distribution of these clusters obtained from a 3D canonical
MC simulation. The overall concentration exceeds the CMC. These figures show
clearly the presence of micellar aggregates as well as a dispersion of the cluster
sizes. Length scales in this solution range from the shortest one corresponding to
the lattice spacing (or tail-tail or head-tail groups separation) to an individual sur-
factant molecule (i.e., several lattice spacings) to aggregates with radii extending
over several tens of lattice spacings.

In an actual solution, each spatial scale has its own characteristic time such
as that associated with the fast flip move, slower reptation, even slower individual
surfactant diffusion, and the very slow diffusion of surfactant aggregates. The use
of MC sampling emancipates us from this hierarchy of time scales and enables
us to achieve equilibrium more efficiently. It is noteworthy that separation of time
scales has also been achieved in some MD simulations.44

Figure 6.7 Snapshot of surfactant aggregates as obtained from a canonical Monte Carlo
simulation in three dimensions. The dark spheres represent hydrophilic headgroups and
bright spheres represent hydrophobic tailgroups in a surfactant molecule.
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Figure 6.8 Cluster size distributions of the aggregates shown in Fig. 6.7.

6.3.5 Kinetic Monte Carlo

The MC methods described heretofore enable rapid relaxation of some system to-
ward equilibrium configurations following physically unrealizable paths. For in-
stance, the MC moves are selected without much relation to the hierarchy in their
relaxation times. To model the kinetics of a process using MC methods, one must
follow pathways that can be related to the actual path followed by the real system.
The occurrence of an event is determined by rate constants or event frequencies.
An event is defined as any single change in the configuration of the system. The
implementation of a kinetic MC simulation therefore involves the selection of an
event according to a uniform probability. Random numbers and the relative fre-
quencies are used to accept or reject the event. The succession of events may be
related to time. Several approaches have been employed to define time.90

6.3.6 Application of kinetic MC to self-assembly of protein subcellular
nanostructures

In this section, we illustrate the kinetic MC method with an example borrowed
from the realm of biological nanostructures, namely, the dynamical behavior of
microtubules. Microtubules (MTs) are naturally formed proteinaceous nanotubes,
24 nm in diameter and up to hundreds of microns in length. MTs are biopolymers
assembled from two related protein monomers; α and β tubulins.91 In the presence
of the small molecule guanosine 5′-triphosphate (GTP), these tubulin monomers
form a heterodimer, which self-assembles into the microtubule structure. Due to
the geometry of self-assembly and differences in addition rates, a MT is polarized
containing (−) and (+) ends. The (−) end contains an exposed α tubulin and
undergoes slower heterodimer addition rates than the (+) end, which consists of
an exposed β tubulin. Therefore, net MT polymerization occurs from the (+) end
of the growing polymer or nucleation complex. MTs generated from pure tubulins
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exist in a dynamic state with net addition of monomers to the (+) end and net
removal of monomers from the (−) end.92

Dynamic instability is an intrinsic property of MTs. For αβ-tubulin concen-
tration above a critical value Cc, tubulin dimers polymerize into MTs; while be-
low Cc, MTs depolymerize.91 Near Cc, MTs exhibit dynamic instability during
which a single MT undergoes apparently random successive periods of assembly
(slow growth) and disassembly (rapid depolymerization). Computer simulations of
MT assembly/disassembly have recreated many experimentally observed aspects
of MT behavior and have given strong support to a lateral cap model of MT dy-
namics. This model utilizes a coarse-grained representation of the protein tubulin
heterodimers.

Early kinetic MC studies of models based on simplified single-helix93 and
multihelices94 generated phase change between a slow-growing GTP-capped MT
end and rapidly shortening uncapped MT end. Subsequent simulations by Bayley
et al.95,96 were based on a simplified helical lattice model with only longitudi-
nal and single lateral interactions between αβ-tubulin subunits (the “lateral cap
model”). Bayley’s model differs from the model of Chen and Hill94 in that it gives
a molecular description to the switching of MT between assembling and disassem-
bling states in terms of a fully coupled mechanism linking tubulin-GTP (Tu-GTP)
addition and GTP hydrolysis (conversion of Tu bound GTP into the diphosphate
GDP). Bailey’s model focused on the “5-start” helical 13-protofilament MT lattice.
MTs are known to readily form different lattices, some having a “seam” in which
the lateral interactions between adjacent protofilaments are misaligned.97 Martin
et al.98 have developed a more rigorous lattice model that accounts for MT lattice
variations and seams. In this latter model, association and dissociation rate con-
stants are obtained from estimates of the free energies of specific protein-protein
interactions in terms of the basic MT lattice. The performance of kinetic MC simu-
lations of MTs does not appear to be too sensitive to the detailed numerical values
assigned to the intersubunit bond energies.99 Martin’s model rationalizes the dy-
namic properties in terms of a metastable MT lattice of T-GDP stabilized by the
kinetic process of T-GTP addition. Furthermore, with this model, the effects of
small tubulin-binding molecules are readily treated. The lateral cap model pro-
vides a basis for the examination of the effect of antimitotic drugs (e.g., colchicine,
taxol, etc.) on MT dynamics. In particular, it was used to study the control of MT
dynamics by substoichiometric concentration of drugs. The lateral cap model was
further modified to simulate the effect of MT assembly/disassembly on transport
of a motor protein-coated bead that moves along a protofilament.100

To illustrate the application of the kinetic MC method to the dynamical assem-
bly/disassembly of MT we briefly review the five-start helix lattice model of Chen
and Hill.94 With this model a single MT consists of a 2D helical lattice composed of
13 grid sites (13 tubulin heterodimer protofilaments) perpendicular to the direction
of growth (MT principal axis). The lattice is infinite along the principal direction
of the MT. Helical periodic boundary conditions are applied to wrap the lattice
into a tubular structure with a helicity of five lattice points. The steps involved
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in the kinetic MC simulation of MT dynamics at fixed tubulin-GTP concentration
([Tu-GTP]) are as follows:

• Step 1: Identify at the ends of each protofilament along the jagged helical
surface of the tip of a MT the sites “i” for dissociation (occupied grid site at
the top of a step) and association (empty grid site at the bottom of a step).
• Step 2: Assign a rate constant ki for dissociation or association events at

every site “i.” These rate constants depend on the physical structure of the
binding site, the nucleotide content of the unit in adjacent protofilaments
(i.e., both relate to the binding free energy) and [Tu-GTP] in the case of
association.
• Step 3: Calculate the time ti for dissociation or association at every site “i” at

which an event would occur statistically, using the relationship ti =− ln(1−
Ri)/ki , where Ri is a uniformly distributed random number between 0 and 1.
• Step 4: Implement the event with the shortest time (tmin) and modify the

lattice. For addition events, implement a hydrolysis rule for conversion of
Tu-GTP completely embedded into the MT lattice into Tu-GDP.
• Step 5: Increment the total time by tmin.

Using the association and dissociation rate constants of Bayley et al.96 and a
kinetic MC program based on the lateral cap model, we reproduce in Fig. 6.9 the
results on the effect of [Tu-GTP] on the dynamical instability of a single “5-start”

Figure 6.9 Effect of [Tu-GTP] on the dynamical behavior of a single “5-start” helix, 13
protofilaments microtubule. The plots from top to bottom correspond to concentrations,
[Tu-GTP], amounting to 2.45, 165, 1.45, 1.25, and 0.45× 10−5 M, respectively.
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helix, 13-protofilaments MT. The initial MT length is 200 αβ tubulin heterodimers.
The critical Tu-GTP concentration Cc is approximately 1.45× 10−5 molar (M).

6.4 Multiscale simulation schemes

Multiscaling has recently received much attention in the simulation of nanoscale
systems. Indeed for most practical cases, nanoscale structures are not isolated in
a vacuum but are attached to substrates or embedded in a matrix. Since it is com-
putationally prohibitive to simulate large systems at the atomic level, multiscale
schemes have been proposed to reduce the computational effort associated with
the material/environment that surrounds the nanoscale system. While the nanoscale
system is modeled and simulated at the atomic level, the surrounding environment,
in contrast, is treated with a smaller number of degrees of freedom while retaining
some of the important physics and/or chemistry.

Existing multiscale simulation methodologies can be characterized as serial
or concurrent. Within serial methods, a set of calculations at a fundamental level
(small length scale) is used to evaluate parameters as input for a more phenom-
enological model that describes a system at longer length scales. For example, the
quasi-continuum (QC) method is a zero-temperature technique with a formulation
based on standard continuum mechanics [e.g., the finite element (FE) method] with
the additional feature that the constitutive equations are drawn from calculations
at the atomic scale.101–104 Another example of a serial methodology enabling mi-
croscopic fluctuations to propagate to microscopic scales has been illustrated for
biological membranes.105 This approach couples nonequilibrium MD to a method
that solves the large-deformation problem in continuum mechanics.

In contrast, concurrent methods build around the idea of describing the physics
of different regions of a material with different models and linking them via a set
of boundary conditions. The archetype of concurrent methods divides the space
into atomistic regions coupled with a continuum modeled106,107 via FE. Coarse
graining has been proposed as a means to couple seamlessly an MD region to
a FE mesh.108 Coarse-grained MD produces equations of motion for a mean-
displacement field at the nodes of a coarse-grained mesh partitioning the atomistic
system.

Other algorithms to couple atomistic and continuum regions have also been
proposed.109–112 Broughton et al.109 presented an algorithm involving handshak-
ing between FE and MD. This algorithm was able to dynamically track a crack
propagating through silicon. The handshaking between the MD and FE regions
was achieved by drawing an imaginary surface between them. Within the range
of the MD interatomic potential from this surface, FE mesh points were located
at equilibrium atomic sites. Any FE element that crossed the interface contributed
half its weight to a conservative Hamiltonian. Any MD interaction that crossed the
interface also contributed half its weight to this Hamiltonian. Kohlhoff et al.110

introduced a similar transition region between the atomic and continuous regions.
They also scaled down the FE size to the atomic scale in this transition region, but
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the interface was of finite size and not sharp. Abraham et al.111 combined the fore-
going two techniques by constructing an explicit Hamiltonian for the atoms and the
FE nodes in the transition region by weighing their contributions with respect to
their distance away from the middle of the interface. Ogata and coworkers112 used
a similar algorithm to study chemical reactions and their interplay with mechanical
phenomena in materials, such as in the oxidation of Si (111) surface.

There are several issues associated with the coupling of a nanoscale system to a
system with larger scales. For instance in linear elasticity, the fundamental proper-
ties such as stress, strain, and the elastic moduli are thermomechanical quantities;
i.e., they satisfy the thermodynamic and the long-time limits. The calculation of
some of these quantities from atomistic models does not present significant dif-
ficulties, as long as large enough systems and long enough times are used. This
constitutes the basis for coarse graining that enables the extension of atomistic sys-
tems into the realm of continuous models with seamless coupling between length
scales.108 However, spatial coupling becomes a problem when dealing with atom-
istic nanoscale systems. A condition necessary to achieve reasonable coupling be-
tween an atomistic system and a continuum is that there are spatial and time scales
over which the two systems overlap. This is not the case in many of the methodolo-
gies reviewed in the previous paragraph where the FEs coupled to an MD region
are reduced to “atomic” dimensions. The spatial coupling between unphysically
small FEs and atoms implies also that the long-time limit may not be satisfied.
In addition, an elastic continuum does not obey the same physics over all possi-
ble wavelengths as that of a discrete atomic system. This physical mismatch is
easily noted in the dispersion relations of both systems that overlap only in the
long-wavelength limit. Therefore, one can expect an elastic impedance mismatch
between a continuum and an atomic simulation when an attempt is made to cou-
ple them.113 Depending on the phenomenon to be investigated, the behavior of the
atomistic system may be altered detrimentally, should the physics of the nanoscale
system be much different from the physics of the medium to which it is coupled.

In the remainder of this section, we illustrate recent methods that enable the
coupling between an atomistic system and another system with a coarser scale.
First, a nanograin polycrystalline MD system is coupled to a coarser lattice MC
model, and overlap of spatial scales is stressed. In a second illustrative example, we
point out the importance of overlap of time scales by coupling an elastic continuous
model to an atomistic one.

6.4.1 Coupling of MD and MC simulations

By analogy with its use in signal and image processing, the wavelet transform
has been used to analyze MD outputs.114 Wavelet transforms can be seen as a
mathematical microscope that provides ready information on the intricate structure
of a “pattern.” The wavelet coefficients provide local information on the nature of
any function at various scales (ranging from the finest to the coarsest), and one
can identify the “important” scale by examining the coefficients at every scale.
Therefore it constitutes an ideal tool for multiscale modeling.
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The compounded wavelet matrix (CWM) method115 has been used to bridge
two computational methodologies (atomistic MD simulation and coarse MC sim-
ulation) applied to a small region of a nanograin-sized polycrystalline material.
The CWM method possesses several advantages. First, it does not assume a priori
that a collection of small atomic-scale systems is equivalent to a microscale-based
model of a large system. Second, the simulation time of the coarsest methodology
is not controlled by the methodology with the slowest dynamics.

An illustrative example of the CWM method is provided via the problem of 2D
grain growth in a nanograin polycrystalline material. This example is based on a
MD simulation of a 2D Lennard-Jones (L-J) system112 and a MC simulation of a
Q-states Potts model116 that can overlap over a range of spatial and time scales.
These two models are bridged in the spatial domain. Atoms in the MD system
interact via a simple 2D 6–12 L-J potential30 with parameters ε = 119.79 K and
σ = 3.405 Å. The MD simulation cell contains 90,000 particles in a cell with edge
length ∼0.106 µm. Interactions between atoms are extended up to third nearest
neighbors. In addition to this large system, the grain growth process is also sim-
ulated in a smaller L-J system. The small system is one-quarter the size of the
former one. This smaller atomic system consists of 22,500 particles in a cell with
edge length ∼0.0503 µm.

For both MD systems, polycrystalline microstructures with fine grains are ini-
tially obtained by quenching a liquid. The initial microstructures are then evolved
with a constant temperature (momentum rescaling thermostat)-constant volume
MD algorithm. The temperature is maintained at approximately 70% of the melt-
ing point. Periodic boundary conditions are used for about 400,000 MD integra-
tion time steps or nearly 1.7× 10−9 s. During that period of time, the total energy
of both systems drops by nearly 63%; thus, coarser microstructures are obtained.
These microstructures are then characterized by calculating the excess atomic po-
tential energy of each individual atom (relative to the potential energy of an atom
in a perfect lattice at the same temperature). The excess atomic energy is then nor-
malized by the total excess energy of the microstructure at t = 0 s. The spatial dis-
tribution of the normalized excess atomic energy is then mapped onto a 512× 512
square matrix for the large system (Fig. 6.10) and 256× 256 matrix for the smaller
one to obtain what will be referred to in the rest of the section as energy maps.
We have used energy maps from microstructures quenched at low temperatures to
minimize the noise due to the contribution of thermal vibration.

In an MC simulation of grain growth with a Potts model, both spatial and
“MC time” scales are coarser than those in MD. The Potts model maps the mi-
crostructure onto a discrete lattice coarser than the atomic scale, and the “spin”
state S = 1, . . . , Q of each lattice site represents the orientation of the grain in
which it is embedded.116 A grain boundary exists between two adjacent lattice
sites with different orientations. An interaction energy Jint is then assigned to a
pair of neighboring sites with different orientations. We employ a Potts model with
a square lattice containing 128× 128 sites and Q = 10 with nearest-neighbor in-
teractions. This model is designed to represent a piece of material with dimensions
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Figure 6.10 Gray-scale representation of the energy maps for the initial large MD system
(upper left), annealed MD system (lower left), one initial Potts/MC system (upper right), and
annealed MC system (lower right). Energy increases from white to black.

similar to those of the large MD system. Periodic boundary conditions are applied
onto the Potts model. A canonical Monte Carlo algorithm is used to evolve this
model. The thermal energy kBT = 0.2 J. Initial microstructures are produced from
totally random configurations after 4× 106 MC moves.

A total of four MC initial configurations corresponding to microstructures op-
tically similar to the initial configuration of the large L-J system are thus obtained.
Subsequently, long MC simulations are performed to anneal the initial microstruc-
tures until the total energy averaged over the four systems decreases to nearly 63%
of the average energy of the initial configurations. The 128×128 matrices contain-
ing the value of energy at every lattice site characterize the final MC microstruc-
tures (see Fig. 6.10). Note that the energy in the Potts model represents an excess
energy relative to a perfectly ordered system (perfect crystal). Normalization of the
energy at each lattice site by the total excess energy of the initial microstructure al-
lows a direct comparison with the energy maps produced with the MD simulations.
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In one dimension, a wavelet ψ(x) transforms a fluctuating function117 f (x) as
follows:

Wf (a, b)=
∞∫

−∞
f (x) ψa,b(x) dx. (6.18)

The two-parameter family of functions, ψa,b(x) = (1/
√

a)ψ(xb/a) is obtained
from the mother wavelet function ψ(x) through dilations by the scaling factor a

and translations by the factor b. The factor 1/
√

a is included for normalization.
The parameter a can take any positive real value, and the fluctuations of f (x) at
position b are measured at the scale a.

When discretized, wavelet analysis can be performed with fast algorithms.
Given the wavelet coefficients Wf (a, b) associated with a function f , it is pos-
sible to reconstruct f at a range of scales between s1 and s2 (s1 ≤ s2) through the
inversion formula

fs1,s2(x)= 1

cψ

s2∫
s1

∞∫
−∞

Wf (a, b)ψa,b(x) db
da

a2
. (6.19)

The limits s1→ 0 and s2→∞ reconstruct the original function over all scales.
A 2D wavelet transform includes transforms in the x direction, the y direc-

tion, and in the diagonal x, y direction117. For example, given an energy map of
524× 524 points such as that generated in the large MD simulation, the wavelet
transform consists of three 256 × 256 matrices (one in each direction), three
128 × 128 matrices, and so on. Each decomposition level is at half the resolu-
tion from the previous one. The final level of decomposition represents the map at
the coarsest resolution. Wavelet analysis of a MD energy map provides its wavelet
transform coefficients from the atomic to its coarsest scale (corresponding to the
physical dimensions of the system). Similarly, the wavelet coefficients of an MC
energy map extend over scales ranging from the lattice spacing of the grid to the
system size.

Let us consider the Q-states Potts model and the small L-J system which have
different physical dimensions. The range of scales for both systems overlap pro-
vided that the Potts model is larger than the L-J system and the lattice spacing of
the Potts model is not too coarse. The coarser scales of the L-J model may then
correspond to the finer scales of the Potts model. A compound matrix of wavelet
coefficients is then formed such that, at those scales common to the small L-J and
Potts systems, the statistical properties of the coefficients are those of the small
L-J system; at coarser scales, the statistical properties of the coefficients are those
of the Potts model. This yields a compound wavelet matrix representing the phe-
nomenon of grain growth over the interval of scales now being the union of the
intervals treated individually by the two models.
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Figure 6.11 shows the energy with respect to scale for the three systems con-
sidered here, small and large MD systems and the MC Potts model. The energy
associated with a given scale is evaluated from the wavelet representation of the
energy maps at that same scale. For the wavelet representation of the energy map
at scale s, the wavelet coefficients at all scales except those at s are set to zero; with
this set of coefficients, the inverse wavelet transform is performed [see Eq. (6.18)].
This inverse wavelet transform represents the spatial distribution of the contribu-
tion of scale s to the energy map. The total energy associated with scale s is then
calculated as the sum of the energies in the representation at scale s. We have also
averaged the energy versus scale plots of the four final Potts systems. For the small
MD system (designated as “1/4 L-J” in the figure), the plot contains eight points
(scales 2 through 9) corresponding to resolutions of 1×1 (2 on the horizontal axis),
. . ., 64× 64 (8) and 128× 128 (9). Since this system is physically ¼ of the MC
system, these scales correspond to the large MD system with resolution of 2× 2
(scale 2), . . ., 128× 128 (8) and 256× 256 (9). All three plots show very similar
behavior in the interval of scales from 1 to 7: a maximum between 5 and 6 repre-
senting the mean grain size, a monotonous decrease toward the continuum limit.
The small L-J and large L-J agree quite well with each other.

The energy of the average Potts system is also slightly larger than the energy
of the L-J system. Since this difference is particularly significant near scales 5
and 6, it can be attributed to differences in grain boundary energies. These differ-
ences are not due to a weakness of the wavelet analysis, but only of the incomplete

Figure 6.11 Scale dependency of the energy of the small and large MD systems and
MC/Potts model.
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quantitative correspondence between the physics of the Potts and L-J models. The
average Potts system and the small L-J system overlap at scales s ∈ [2, 7], The
two systems show similar trends in the evolution of energy versus scale. However,
the Potts model lacks information on small-scale features (s = 8, 9), which are
now provided by the small L-J system. The small L-J system lacks information on
large-scale features. Construction of a CWM from the small L-J system and the
Potts model leads to a description of the microstructure (over a combined range
of scales s ∈ [1, 9]) statistically equivalent to that of the wavelet transform of the
large L-J system.

6.4.2 Coupling of an atomistic system with a continuum

In this section, we quantify the impedance mismatch between an elastic continuum
and an atomistic region as the continuum spatial and temporal scales are forced
toward atomic scales. We have coupled dynamically an elastic continuum mod-
eled with the finite-difference time-domain (FDTD) method118,119 and an atom-
istic system modeled with MD. The impedance mismatch between the MD and the
FDTD systems is probed with an incoming elastic wave packet with broadband
spectral characteristics centered on a predetermined central frequency. Reflection
of part of the probe wave packet is a sign of impedance mismatch between the
two systems. The FDTD method solves numerically the elastic wave equation in
homogeneous or inhomogeneous media.118,119 The elastic wave equations are in-
tegrated by means of discretization in both the spatial and the temporal domains.
More specifically, real space is discretized into a grid on which all the variables and
parameters are defined. The main variables are the acoustic displacement and the
stress tensor at every site on the grid. The relevant parameters of the system are the
mass densities and the stiffness/compliance coefficients for each constitutive ele-
ment. The relevant parameters of the FDTD simulation are the grid spacing and the
size of the time step. Appropriate boundary conditions such as periodic boundary
conditions or absorbing boundary conditions are applied.

The FDTD scheme discretizes the wave equation:

∂2ui

∂t2
= 1

ρ

∂Tij

∂xj

, i ∈ [1, 3], j ∈ [1, 3], (6.20)

in both the spatial and time domains and explicitly calculates the evolution of the
displacement u in the time domain. Here, Tij are the components of the stress ten-
sor, and ρ is the mass density. For the sake of simplicity, we limit the consideration
to 1D propagation. The FDTD region is discretized into N 1D elements of length
�x. It is assumed that the FDTD region is infinitely stiff in the other two direc-
tions. The elastic wave equations are approximated using center differences in both
time (time step �t) and space. The displacement un of any element n at each time
step is a function of the stress gradient across that element. Thus, in this technique,
one can predict the displacement of every element after knowing the stress on that
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element. The stress on any element is assumed to be uniform. Absorbing boundary
conditions118 are implemented in order to prevent reflection from the end elements
of the FDTD mesh.

First, one establishes the physical correspondence between the continuum and
the atomistic system. The elastic continuous system to be probed is chosen to have
the physical properties of a L-J model for solid argon. The 1D compliance was
found from a series of MD simulations carried out under the following conditions:
the model for the atomic system was a 3D FCC crystal with periodic boundary
conditions containing 500 particles interacting through the 6–12 L-J potential with
parameters chosen to simulate argon. The interatomic potential was truncated at a
distance of 8.51 Å. The uniaxial long-time limit stress-strain relationship for that
crystal was obtained with the temperature maintained at 46 K via a momentum-
rescaling scheme. For these calculations, a strain was applied in one direction while
maintaining the length of the other edges of the rigid simulation cell. The strain
was applied in increments of 2× 10−4 in the interval [−0.1, 0.1] and the resulting
stress was then calculated from a virial-like equation21 by averaging over 5000 MD
time steps. An MD time step (δt) equals 10.0394 fs. The curve was then fitted to
a third-degree polynomial with the coefficient of the linear term representing the
linear elastic coefficient of the medium.

In the second step, the coupling between the continuum and an atomistic sys-
tem is handled by replacing one FDTD element by a dynamical 3D L-J MD cell
(Fig. 6.12). The number of FDTD elements is 10,000. The MD cell is located at
element 6000. The length of each FDTD element (�x) is equal to the zero pressure
box length of the MD cell (26.67 Å).

As shown in Eq. (6.20), the calculation of the displacement of the acoustic wave
throughout the medium requires the knowledge of the stress fields for every FDTD
element at every FDTD time step. Thus, when a FDTD element is replaced by an
MD cell, the equivalent stress for the element is calculated by uniaxially straining
(according to the FDTD displacement) the MD cell along the direction of the wave
propagation. The condition of rigidity in the other two directions is satisfied by
keeping the length of the edges of the MD cell constant in those directions. The
average value of the MD stress is evaluated for every FDTD time step with the final
configuration of the MD atoms obtained at the previous FDTD time step serving
as the initial state for the current MD calculation.

The coupled continuum and atomistic hybrid system is probed with a 1D wave
packet of the form a0 cos(−kx) exp[−(kx)2/2], where k is the wave number, and
a0 is the maximum amplitude of the wave. The probing signal is initially cen-

Figure 6.12 An illustrative representation of the system consisting of 10,000 elements; the
open boxes represent FDTD elements and the darkened box corresponds to the MD cell.
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tered about the 5000th element and is propagated along the positive x direction.
The wave is propagated through the medium with an initial longitudinal velocity
of the elastic wave through the medium, c0. The signal’s frequency spectrum is
broadband and the central frequency of the wave packet ν equals c0k. The central
wavelength of the wave packet was chosen to be an integral multiple of �x, to
ensure stability of the FDTD algorithm. A preliminary study120 of the wave prop-
agation characteristics indicated that the FDTD time step (�tcrit) had to be smaller
than (�x/2c0) for a stable algorithm.

At every FDTD time step, the MD stress is calculated by averaging over NMD =
�t/dt time steps, with �t ≤ �tcrit. A reduction in �t automatically leads to a
decrease in the number of MD time steps over which stress is averaged (for every
FDTD time step). It is possible to push the limit of time coupling between the two
simulation techniques toward one to one correspondence between the two time
steps (i.e., �t = δt). The FDTD/MD hybrid method, therefore, enables us to test a
range of time-scaling conditions from coarse graining to time matching between a
continuum and an atomic system.

The coupling between the continuum and atomistic systems is examined by an-
alyzing the reflected signal at an element some distance away from the MD cell.
This signal is compared and contrasted with the signal that is reflected in the case
when the MD cell behaves as an FDTD element with a nonlinear elastic coeffi-
cient as determined previously from the long-time third-order stress/strain rela-
tionship. The latter case is referred to as the “pseudo MD-FDTD coupling (PC)”
while the former is referred to as “real-time MD-FDTD coupling (RTC).” Discrete
fast Fourier transforms (FFT) are used to obtain the frequency spectrum of all of
the signals.

The impedance mismatch between the continuum system and the MD system
is very small and most of the probing signal passes through the MD cell. However,
there is a small amount of reflected signal. The Fourier spectrum of this reflected
signal for a probing signal with frequency equal to 3.930 GHz is illustrated in
Fig. 6.13. The PC reflected signal is essentially limited to low frequencies. The
difference in reflected signal between the PC and RTC simulation clearly illustrates
the fact that the RTC simulation does not satisfy the long-time limit. Indeed, the PC
simulation corresponds to the long-time limit as the stress of the pseudo-MD cell is
calculated using the predetermined elastic coefficients. The RTC calculation with
stress averaged over only 23 MD steps is unable to achieve that limit as NMD = 23
does not even last the time of one atomic vibration.

The RTC and the PC signals have distinct frequency cutoffs, with the cutoff
for the PC signals being much smaller than that of the RTC signals. This can be
explained again on the basis that the PC signal represents the long-time limit of
the coupling, where the high-frequency (short-wavelength) modes are averaged
out; while the abrupt cutoff for the RTC signal represents an upper limit in the
frequencies that can be supported by the FDTD system. The discretization of the
continuum into small elements modifies its dispersion relation by introducing an
upper limit on the frequencies (a Debye-like frequency) that can be resolved nu-
merically. This upper limit on frequency for traveling waves depends on the extent
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Figure 6.13 Frequency spectrum of the reflected signals at 3.930 GHz; NMD = 23. The
upper figure represents the low-frequency range of the reflected signal, while the lower fig-
ure corresponds to the high-frequency range of the signal. Here RTC stands for a real-time
coupling between the FDTD and the MD region and PC corresponds to a pseudo-coupling
between the two regions (see text for details).

of discretization of the continuum, i.e., the size of the FDTD element. Part of the
high-frequency signal of the RTC system is not due to reflection of the probing sig-
nal by the MD cell. Since the temperature of the MD system is maintained constant
with a momentum-rescaling thermostat, the internal stress of the MD cell fluctu-
ates, this even in absence of the probing signal. In absence of the probing wave,
the fluctuating stress averages to zero in the long-time limit and does not affect
the neighboring FDTD elements. However, due to the RTC conditions, the stress
averaged over a small number of MD steps (NMD) does not vanish. The thermal-
ized MD system becomes a source of elastic energy. High-frequency elastic waves
propagate along the FDTD system outward from the MD cell.
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6.5 Concluding remarks

Atomistic computer simulation techniques offer opportunities for nanoscale sci-
ence and engineering. Nanoscale structures are ideal for computational studies us-
ing MD or MC methods. Individual nanostructures can be modeled and simulated
effectively because their behavior is limited to a small number of spatial and tempo-
ral scales. Simulations of nanoscale systems have, therefore, the potential of being
predictive. However, as illustrated by the example of the thermal stability of a C60
molecule, the choice of a thermostat for coupling the individual nanostructure to a
“macroscopic” heat bath is important as it influences the dynamics of the nanos-
tructure. Furthermore, the predictive capability of an atomistic simulation will be
limited by the degree of realism of the input interatomic potential.

Nanoscale composite systems constituted of several nanostructures (or com-
posed of nanostructures embedded in a matrix or lying on a substrate) exhibit
greater interactions between vastly different spatial and temporal scales. The simu-
lation of a collection of nanoscale structures may include time scales ranging from
the characteristic time of atomic vibration to the characteristic time of molecular
conformational change to the characteristic time of molecular diffusion etc. MC
simulations are not constrained by a hierarchy of characteristic time constants. MC
methods offer an alternative to achieve fast exploration of phase space. The kinetic
MC method reinstates the hierarchy of time scales and provides kinetic information
on the simulated process.

Multiscale MD and MC methods are emerging as effective simulation ap-
proaches for composite nanostructures. The predictive capability of a multiscale
MD or MC method depends on how well one achieves scale parity.121 Many mod-
eling and simulation methodologies are developed at one primary length or time
scale. For instance, continuum mechanics limits the representation of vibrations to
long wavelengths and low frequencies. Dynamical atomistic simulations naturally
include high-frequency and short-wavelength vibrational modes. Successful cou-
pling between simulation methods should not give the priority to any one scale.
Overcoming this built-in bias should be of primary concern in the simulation of
composite nanoscale system via multiscale methods. In Sec. 6.4.1, we showed that
overlap of spatial scales can be used advantageously to bridge simulation method-
ologies modeling grain growth of a nanograin polycrystalline material over differ-
ent intervals of scales to achieve a representation of the phenomenon over a range
of scales union of the individual intervals. The coupling between a small atomistic
system and an elastic continuum served as an example of a system for which scale
parity in time may not be satisfied.

Future research directions in atomistic computer simulations of nanoscale
structures will be driven by the needs to (1) expand the range of accessible spatial
and temporal scales, (2) develop realistic transferable models, (3) improve com-
patibility between models, and (4) establish scale parity. These needs require a
research effort in the development of improved simulation methodologies, of first-
principle models that can be easily input into simulation software, and of numer-
ical means of interfacing quantum/atomistic/continuum models without imposing
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model-related bias. More specifically, it is important to pursue the development
of accelerated MD methods that enable the simulation of atomistic systems over
very long times (seconds to hours). Accelerated MD simulation of surface diffu-
sion has been addressed recently by Voter and coworkers122–124 who, based on
transition state theory and several methodologies (accelerated dynamics methods
such as hyperdynamics, parallel replica dynamics, temperature-accelerated dynam-
ics), were able to achieve the simulation of diffusion over extended time inter-
vals. An intermediate-resolution protein folding model combined with constant-
temperature discontinuous MD has enabled the simulation of protein folding and
protein aggregation over relatively long time scales.125,126 Finally, large-scale MD
simulations that include chemical reactivity have been made possible by using
quantum chemical transfer Hamiltonians of the semiempirical type. These meth-
ods provide a quantum chemical treatment of interatomic forces while requiring
several orders of magnitude less time than ab initio calculations.127,128
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E internal energy
V volume
T temperature
N number of particles
Ni number of particles of type i

P pressure
µ chemical potential
H Hamiltonian
pi momentum of particles i

ri position of particle i

ṙi velocity of particle i

r̈i acceleration of particle i

{p} momenta of all of the particles in a system
{r} positions of all of the particles in a system
m mass
V potential energy function
kB Boltzmann’s constant
Fi force on particle i

α damping factor for isothermal constraint method
η Nosé-Hoover thermostat degree of freedom
pη momentum associated with η

Q mass associated with the Nosé-Hoover thermostat degree of free-
dom

ηj degree of freedom associated with j th thermostat in Nosé-
Hoover chain of thermostats

pηj
momentum associated with ηj

Qj mass of the j th thermostat in a Nosé-Hoover chain of thermostats
d dimensionality of a system
H enthalpy
Vij bond energy of Tersoff’s potential
fR(rij ) repulsive pair potential of Tersoff’s potential
fA(rij ) attractive pair potential of Tersoff’s potential
fc(rij ) cutoff function of Tersoff’s potential
bij many-body environment-dependent bond order term in Tersoff’s

potential
〈A〉 ensemble average of A

p({r}) probability of occurrence of a configuration {r}
p acceptance probability
ZµV T grand canonical partition function
� de Broglie thermal wavelength

 phase space
εIJ nearest-neighbor pair energies between chemical species I and J
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ki rate constant for dissociation or association events at a site i

ti time for dissociation or association at a site i

R, Ri uniformly distributed random number between 0 and 1
tmin shortest time among the ti’s
ε, σ Lennard-Jones potential parameters
S ∈ [1, Q] “spin” or orientation states of Q-states Potts model
Jint interaction energy of Potts model
ψ(x) 1D mother wavelet function
f (x) 1D fluctuating function
ψa,b(x) two-parameter family of wavelet functions
a scaling factor
b translating factor
Wf (a, b) wavelet coefficient
s scale
fs1,s2 function f reconstructed with an inverse wavelet transformation

limited to the interval of scales [s1, s2]
ui i ∈ [1, 3] components of the elastic displacement
Tij i, j ∈ [1, 3] components of the stress tensor
ρ mass density
�t finite-difference time-domain time step
δt molecular dynamics time step
k wave number of 1D wave packet
a0 amplitude of 1D wave packet
c0 longitudinal velocity of an elastic wave
ν central frequency of wave packet
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7.1 Overview

7.1.1 Introduction

The ability to manipulate matter at the atomic scale bears promise to produce de-
vices of unprecedented speed and efficiency. The emerging area called nanoscience
and nanotechnology has seen phenomenal growth in the past decade and is likely
to be the frontal area of research for the next two decades. The outcome of this
research is likely to revolutionize technology in ways that will enable humankind
to manipulate even individual atoms so as to produce desired effects. The vision of
nanotechnology is not new; it is now well over 40 years since Richard Feynman1

made his foresightful speech at the winter meeting of the American Physical Soci-
ety at Caltech. Eric Drexler is the one many would call the “father of nanotechnol-
ogy.” His vision was first outlined in his book, Engines of Creation, The Coming
Era of Nanotechnology, the first few paragraphs of which are deeply insightful and
worth quoting verbatim:

Coal and diamonds, sand and computer chips, cancer and healthy tissue: throughout history,
variations in the arrangement of atoms have distinguished the cheap from the cherished, the dis-
eased from the healthy. Arranged one way, atoms make up soil, air and water; arranged another,
they make up ripe strawberries. Arranged one way, they make up homes and fresh air; arranged
another, they make up ash and smoke.

Our ability to arrange atoms lies at the foundation of technology. We have come far in our
atom arranging, from chipping flint for arrowheads to machining aluminum for spaceships. We
take pride in our technology, with our lifesaving drugs and desktop computers. Yet our spacecraft
are still crude, our computers are still stupid and the molecules in our tissues still slide into
disorder, first destroying health, then life itself. For all our advances in arranging atoms, we still
use primitive methods. With our present technology, we are still forced to handle atoms in unruly
herds.

But the laws of nature leave plenty of room for progress, and the pressures of the world
competition are even now pushing us forward. For better or for worse, the greatest technological
breakthrough in history is still to come.2

Many of the foresights of the these visionaries are a reality today. Capability to
manipulate individual atoms (Fig. 7.1) exists, and micromachines or microelectro-
mechanical systems (MEMS) are made routinely (Fig. 7.2). Indeed, researchers4

have already moved to submicron dimensions and produced nanoelecromechanical
systems (NEMS), which have the extremely small response times of the order of
10−9 s (Fig. 7.3). Given these spectacular advances in the experimental front, the
key to conversion of these scientific achievements into useful devices and prod-
ucts hinges critically on our predictive capability of phenomena at the nanoscales
that are essential for the design of devices. This chapter focuses on theoretical as-
pects of “nanomechanics,” a subject that allows for the prediction of mechanical
properties at the nanoscale.

7.1.2 Aim and scope

The main goal of this chapter is to provide an overview of theoretical approaches
to understanding mechanics at the nanoscale. Focus lies on methods that enable
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Figure 7.1 Xenon atoms were arranged in an array on a Ni (110) surface to create an
“atomic name plate.” The height of each letter is about 50 Å. The atomic manipulations were
performed using an atomic force microscope (AFM), and the image was captured using a
scanning tunneling microscope (STM). (Reprinted with permission from Ref. 3, © 1990 The
Nature Publishing Group.)

(a) (b)

Figure 7.2 (a) A 3 million:1 transmission made at Sandia labs, featuring six intermeshing
gearing reduction units, each with gears in ratio of 1:3 and 1:4. Each single transmission
assembly (six are shown) is capable of being duplicated and meshed with other assemblies.
The gear wheels are each about the diameter of a human hair. (b) A close-up of the gear
system. (From http://www.sandia.gov/media/microtrans.html.)
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Figure 7.3 NEMS made of silicon carbide with response times on the order of 10−8 s. (After
Roukes.4)

predictive capability. The term “nanomechanics” itself is interpreted in a broad
sense. The methods described herein are applicable to study two general classes of
problems: (1) the nanoscale mechanical behavior of materials and (2) the mechan-
ical behavior of nanostructures. A problem that falls into the first class, the area
of computer-aided materials design, is the prediction of the fracture toughness of
a new alloy from a knowledge of its atomic constituents alone. Prediction of the
flexural rigidity of a nanorod of SiC (see Fig. 7.3) is an example of problems of
the second type. Theoretical approaches to both classes of problems have much in
common, and the methods described in this chapter shall find use in both classes.
The grand challenge in the development of theoretical approaches to modeling me-
chanics at the nanoscales is the treatment of the multiple length and time scales that
are present in phenomena at the meso- and nanoscales.

The issue of multiple scales in computer-aided materials design is now illus-
trated. Suppose that the aim is to calculate macroscopic physical properties (elastic
modulus tensor, thermal expansion coefficient, specific heat, thermal conductivity,
yield stress, etc.) of a given material when an atomistic description of the mater-
ial of interest is known. The macroscopic properties of materials are governed by
phenomena that have multitudes of length and time scales. This point can be clari-
fied by considering the example of the prediction of stress-strain curve of a metal-
lic single crystal. Roughly three of the macroscopic properties are related to the
stress-strain curve of a single crystal: elastic modulus, yield stress, and hardening
modulus. The elastic modulus is determined by the physics at the smallest length
scales, i.e., directly by the bonding between the atoms; the length scale of interest
is a few unit cells that make up the crystal (about 10 to 100 Å). Yield stress (of a
single crystal) is governed by the stress required to make individual dislocations
move—the Peierls stress; the appropriate length scales are about 100 to 1000 Å,
roughly the size of the dislocation cores and distances between dislocations. The
hardening modulus is governed by density of dislocations, dislocation-dislocation
interactions etc.; i.e., the appropriate length scales are 1000 to 10,000 Å. Clearly,
there are more than four decades of length scales involved in the problem of deter-
mination of the stress strain curve from an atomistic description of matter.
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Modeling of nanostructures also presents the problem of multiple scales. A key
issue is that properties of nanostructures are size dependent. An illustration of this
point is provided by a set of beautiful experiments (see Fig. 7.4) on carbon nano-
tubes performed by Gao et al.5 The experiments involve single carbon nanotubes
excited by a sinusoidally time varying field. The tubes, held in a cantilever con-
figuration, vibrate in response to the applied field, the amplitude of which is ob-
tained as a function of the excitation frequency. This response curve is used to

(a) (b)

Outer diameter Inner diameter Length
D (nm) D1 (nm) L (µm) Frequency Eb

Nanotube (±1) (±1) (±0.05) ν (MHz) (GPa)
1 33 18.8 5.5 0.658 32± 3.6
2 39 19.4 5.7 0.644 26.5± 3.1
3 39 13.8 5 0.791 26.3± 3.1
4 45.8 16.7 5.3 0.908 31.5± 3.5
5 50 27.1 4.6 1.420 32.1± 3.5
6 64 27.8 5.7 0.968 23± 2.7

(c)

Figure 7.4 Nanomechanics of single carbon nanotubes. The tubes are excited by a sinu-
soidal time-varying field (a) and the amplitude of the response is measured as a function of
excitation frequency (b). The elasticity of the tube is calculated from the response as shown
in table (c). (Reprinted with permission from Ref. 5, © 2000 The American Physical Society.)
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determine the elastic modulus of the carbon nanotube material using equations
derived from standard continuum mechanics that relate the resonant frequency of
a cantilever beam to its elastic modulus and other geometric parameters. The re-
sults tabulated in Fig. 7.4 show that the elastic modulus depends rather strongly
on the cross-sectional dimensions of the tube. Observation of the size dependence
of “material properties” is not limited to mechanical properties. Indeed, these ob-
servations of size-dependent material properties have resulted in popular phrases
such as “at nanoscales, material = device,” indicating that as size scales approach
the atomic scale the conventional thinking of the structure and the material being
distinct entities has to be abandoned. With diminishing size scales of the structure,
the discrete nature of materials, i.e., the atomistic nature of matter, becomes in-
creasingly important. Nanomechanics, therefore, requires a shift in the paradigm
from conventional theoretical approaches to mechanics.

Conventional approaches to understanding mechanics of materials and struc-
tures exploit the continuum concept. The continuum mechanics approach is to treat
the material or structure of interest as a continuum where quantities of interest such
as the stress and strain tensors etc., are treated as fields. The fields satisfy certain
basic physical relations such as equilibrium conditions and geometric compatibil-
ity relations. Material behavior is incorporated by means of constitutive relations
between stress and strain. This theoretical framework results in a field theory, and
specific problems are reduced to the solutions of sets of coupled partial differential
equations or a boundary-value problem. The techniques for the solution of such
differential equations are well established, and have become commonplace in en-
gineering design. This traditional continuum approaches have severe limitations as
the size scale of the the structure becomes close to the atomic dimensions. A key
drawback of standard continuum mechanics is the absence of an intrinsic length
scale in the theory, which is characteristic of matter (this length scale is roughly
equal to the spacings between the atoms), which governs much of the phenomena
at the nanoscale.

Atomistic models, alternative to continuum approaches in modeling mechanics
at nanoscales, explicitly acknowledge the discrete nature of matter. The degrees of
freedom in these class of models are the coordinates of the atoms that make up the
solid. The dynamics of the collection of atoms is determined from the interactions
between the atoms. A key step in the construction of an atomistic model is the
description of the interactions between the atoms. There are various approaches
to achieve this goal, and typically the approach chosen will be a compromise be-
tween accuracy and available computational resources. Once an atomistic descrip-
tion of the material or structure is available, standard tools of molecular dynamics
and statistical mechanics can be brought to bear on the problem. The advantage
of the atomistic description is that the intrinsic nonlocality (presence of an intrin-
sic length scale) and nonlinearly are automatically built into the model. It might
therefore seem that atomistic models are the natural choice for the study of me-
chanics at the nanoscales. However, the advantages of the atomistic methods come
at sometimes exorbitant computational price tags. Also, much of our understand-
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ing about mechanics has been shaped by continuum concepts, and learning from a
large multibillion atom simulation presents other challenges.

Promising theoretical approaches to the problems of nanomechanics exploit ad-
vantages of both the continuum concept and the atomistic methods—the so-called
“mixed methods” or “hybrid methods.” Mixed methods involve augmenting stan-
dard continuum approaches to include an intrinsic scale (nonlocal continuum the-
ories), and/or incorporating the presence of free surfaces that become important
at smaller scales. Numerical approaches based on these ideas, such as the quasi-
continuum method,6 bear much potential as efficient models to address problems
of nanomechanics.

The aim of this chapter is to present short descriptions of continuum meth-
ods, atomistic methods, and the more recent mixed methods. Attention is focused
on the main ideas underlying these methods with details being available in the
cited references. Section 7.2 contains a brief review of continuum mechanics in-
cluding a discussion of equilibrium, kinematics, and constitutive relations. A short
discussion of the finite element method, the standard numerical approach to solv-
ing boundary-value problems of continuum mechanics, is also presented to make
the chapter self-contained. Section 7.3 is a summary of atomistic models. Top-
ics treated are total energy descriptions, lattice statics, and molecular dynamics.
Mixed models are discussed in Sec. 7.4, where the quasi-continuum method and
augmented continuum models are presented.

7.1.3 Notation

The language of vectors and tensors7,8 is used freely throughout the chapter. In-
variant forms of vectors and tensors are denoted in bold font using either Latin or
Greek symbols (for example, x, F , and σ ). Components of a vector x with respect
to a Cartesian basis {ei} are denoted as xi . A second-order tensor F is expanded
in the basis {ei ⊗ ej } with components Fij . The gradient is denoted by ∇, and
the divergence of a field is denoted by ∇·. Summation convention is used wherever
necessary. For example, the divergence of a second-order tensor σ denoted as ∇ ·σ
is expressed in component form using the summation convention as follows:

∇ · σ ≡ σij,j ≡
3∑

j=1

σij,j . (7.1)

7.2 Continuum concepts

All matter is made of atoms. In constructing theories to understand the mechan-
ics of a solid body, it would be impossible to consider all of the atoms that make
up the solid if the size of the body is much larger than the spacing between the
atoms. The alternative is to “smear out” the atoms and consider the solid as a con-
tinuum. By continuum, it is understood that the body under consideration has the
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same topological structure as a subset of the 3D space that it exists in. Physical
quantities of interest such as stress and strain are defined at every point in the body
(i.e., they are represented as fields), and these satisfy conditions of equilibrium and
compatibility. Specifics of material behavior are embodied into the constitutive
equations that relate the stress and strain at every point. The combination of these
three concepts (namely, equilibrium, compatibility, and constitutive relations) re-
sults in a boundary-value problem (stated as a set of partial differential equations)
for the fields of interest. There are comprehensive accounts of continuum concepts
applied to solids to be found in several excellent books.7–9

A solid body of interest (see Fig. 7.5) is considered to be a collection of mate-
rial points that occupy a region V of space enclosed by a surface S with outward
normal n. The positions of material points in the body with respect to some chosen
origin is described by a vector x. Although the concept of the material point in
continuum mechanics does not appeal to any intrinsic scale in the body, it is un-
derstood physically that each material point in reality represents a large collection
of atoms over which all properties are averaged, i.e., each material point represents
a representative volume element. Physical quantities of interest are represented as
fields, i.e., for every value of x and therefore for each material point, the quantity
will be defined (and assumed to be sufficiently smooth as x varies).

7.2.1 Forces, equilibrium, and stress tensor

A fundamental concept in the mechanics of point particles is the force. The concept
is generalized in continuum mechanics to distributed forces. The body force field
b(x) is a vector field defined in V such that a material point at x experiences a
force b per unit volume. Similarly, forces can be distributed along the surface and

Figure 7.5 A solid body is considered as a continuum object occupying a region V enclosed
by surface S with outward normal n. Body forces b act in V , and surface tractions on S .
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are called surface forces f (x), where f is the force per unit area of a point x on
the surface S of the body. Examples of body forces include the force of gravity.
Surface forces could arise due to a fluid contacting the surface of the body, contact
with other solids, etc.

The condition for static equilibrium of a body under the influence of body
forces b(x) and surface forces f (x) is given by the Euler–Cauchy law (which
is the generalization of Newton’s law for point particles to a continuous body). The
Euler–Cauchy law states that the distributed forces b(x) and f (x) will allow the
body to be in static equilibrium only if the net force and net moment acting on the
body vanish. Mathematically these conditions can be expressed as∫

V
b dV +

∫
S

f dS = 0, (7.2)

and ∫
V

x × b dV +
∫

S
x × f dS = 0, (7.3)

where × denotes the cross product. Equation (7.2) represents the condition for the
translational equilibrium, while Eq. (7.3) specifies conditions on the distributed
forces that enable the body to be in rotational equilibrium.

A fundamental concept in continuum mechanics is that of traction. To illus-
trate this concept, a point P in the interior of the body is considered. The body is
imagined to be cut into two parts A and B by a surface SAB that passes through
the point P (see Fig. 7.6). The normal n is the outward normal to the part A of the
body. On investigation of the equilibrium of the part A of the body, it is evident that
some forces must be exerted on the this part of the body by the other part (part B)
through the surface SAB . Similarly, the part A exerts an equal but opposite force
on part B. The nature of the forces that are transmitted across the surface SAB can
be understood by considering a small patch of the surface SAB passing through the
point P (see right side of Fig. 7.6), of area �S with normal n. The part B of the
body exerts a force �T on this area element. The traction t is defined as

t = lim
�S→0

�T

�S
. (7.4)

The traction vector t , in general, depends on the surface that passes through the
point P , and the relationship between the t and the surface can be complex. Cauchy
postulated (later proved by Noll10) that the traction vector on a surface that passes
through a point depends only on the normal to the surface. Expressed mathemat-
ically, Cauchy’s principle states the traction depends on the normal to the surface
through a function t(n), which satisfies the condition

t(−n)=−t(n). (7.5)
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Figure 7.6 An imaginary surface SAB passing through the point P in the body. The surface
divides the body into two parts A and B. The figure on the right shows a magnified view of
a small patch of the surface that passes through the point P .

Cauchy further proved that if the traction depends only on the normal n and satisfies
Eq. (7.5), then the relationship between the traction and the normal is linear, i.e.,

t(n)= σn, (7.6)

where σ is the stress tensor and σn represents the action of the tensor σ on the
vector n. The tensor σ is expressed in terms of a Cartesian basis as

σ = σij ei ⊗ ej , (7.7)

where σij are the tensor components (summation convention over repeated indices
is assumed). The symbol⊗ stands for the tensor product as explained in the books
already mentioned.7,8 Thus, on application of distributed forces to a body, a stress
tensor field σ (x) develops in the body.

It is evident from Eq. (7.6) that the stress tensor at the surface is related to the
applied surface forces f via

σn= f on S, (7.8)

where n is the outward normal to the body. On using Eq. (7.8) in Eq. (7.2) and
insisting every part of the body be in equilibrium, the relationship between the
distributed body forces and the stress tensor field is obtained as

∇ · σ + b= 0 in V. (7.9)
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Also, the condition of rotational equilibrium provides a further condition on the
stress tensor (in the absence of body moments)

σ = σ T , (7.10)

where σ T is the transpose of the tensor given by

σ T = σjiei ⊗ ej . (7.11)

Equations (7.8), (7.9), and (7.10) enforce the condition that the stress tensor
field that develops in the body is in equilibrium with the applied distributed forces.
These three relations, in fact, define a boundary value problem for the stress com-
ponents σij . The possibility of a unique solution in various spatial dimensions of
this boundary value problem can be understood from the information collected in
Table 7.1. It is evident that in dimensions higher than one, there is no possibility
of a unique solution for the boundary value problem for the stress components ob-
tained from the equilibrium conditions alone. Expressed in other words, there are
no statically determinate problems in two and more spatial dimensions.

The stress tensor σ developed in this section is called the Cauchy stress tensor
or the true stress tensor. Other stress measures are required with dealing with non-
linear problems such as the first and second Piola–Kirchoff stress tensors. Details
regarding these may be found in the books by Chadwick7 or Ogden.8

7.2.2 Kinematics: deformation and strain tensor

Development of continuum mechanics proceeds with the study of kinematics and
deformation. Conceptually, kinematic quantities are distinct from dynamic quanti-
ties such as the stress tensor, i.e., kinematics is developed without any reference to
the cause of deformation or strain.

Consider a continuous body occupying a region V enclosed by a surface S (see
Fig. 7.7). Points P in the body are described by a position vector x with respect
to an origin O, as shown in Fig. 7.7—this configuration of the body is called the
reference or undeformed configuration. Due to some causes, the body deforms and
occupies a new region V ′ enclosed by the surface S ′—a configuration called the
deformed configuration. Every point in the undeformed configuration moves to
a new point in the deformed configuration described by the position vector y. In
particular, the point P ′ is the point to which a material particle at point P in the un-

Table 7.1 Possibility of a unique solution to the boundary value problem for stresses in 1D,
2D, and 3D space.

Spatial Dimension No. of Independent Number of Equations Unique Solution
Stress Components Possible?

1 1 1 Yes
2 3 2 No
3 6 3 No
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Figure 7.7 Deformation of a continuous body.

deformed configuration arrives after deformation. The mathematical description of
deformation uses the idea of functions. The deformation function, more commonly
known as the deformation map, is defined as

y = y(x). (7.12)

It prescribes a rule to obtain the image of any material point x in the reference
configuration. It is assumed that the deformation map is well defined in that it
preserves the topology of the body. Associated with the deformation map is the
displacement field

u(x)= y(x)− x, (7.13)

which describes the displacement suffered by the material point at x in the refer-
ence configuration.

The deformation map of Eq. (7.12) is, in general, a nonlinear vector-valued
function. A more “local” description is mathematically better managed. To this
end, attention is focused on a point Q with position vector x+ dx in the neighbor-
hood of the point P (whose position vector is x) in the undeformed configuration
(the vector that connects P to Q is the vector dx, see Fig. 7.8). The point P maps to
point P ′ under the deformation map [Eq. (7.7)], and the point Q maps to the point
Q′ in the neighborhood of P ′. Since the position vector of P ′ is y, the position
vector of Q′ is y + dy. It is evident that

dy = y(x + dx)− y(x)≈ ∂y

∂x︸︷︷︸
F

dx

�⇒ dy = F dx, (7.14)
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Figure 7.8 Deformation of a local neighborhood of a point P .

where F is the gradient of deformation tensor or the deformation gradient tensor.
The gradient of deformation tensor at a point in the body describes the image of
a “small” line element dx originating from that point. This tensor is related to the
deformation map via

F =∇y =∇(x + u)= I +∇u. (7.15)

Deformation maps that are generally considered in continuum mechanics satisfy
the condition

detF > 0 (7.16)

everywhere in the body, where detF is determinant of the tensor F .
The concept of strain is now introduced. The Green–Lagrange strain tensor E

at a point defines the change in the squares of lengths of every material fiber that
originates at the point by

|dy|2 − |dx|2 = dx ·F T F dx − x · Ix

= 2 dx · 1
2

(F T F − I )︸ ︷︷ ︸
E

dx

�⇒ |dy|2 − |dx|2 = 2 dx ·E dx, (7.17)

where · stands for the dot product. The Green–Lagrange strain tensor can be written
in terms of displacement fields as

E = 1

2

(∇u+∇uT +∇uT ∇u
)
. (7.18)

It is clear that the Green–Lagrange strain tensor has a nonlinear dependence on
the gradient of displacement. Just as for the stress tensor, there are several other
measures of strain, depending on the configuration in which they are defined. These
are considered in great detail by Ogden.8

When the deformation is “not too severe,” a condition that is mathematically
characterized by |∇u| � 1, the Green–Lagrange strain tensor can be linearized as

E ≈ ε = 1

2
(∇u+∇uT )= sym(∇u), (7.19)
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where ε is the “small-strain” tensor (called simply “strain tensor” in this chapter),
which is equal to the symmetric part of the gradient of displacements as denoted
by “sym.” The small strain tensor is the tensorial generalization of the elementary
concept of strain as “change in length by original length”; indeed

|dy| − |dx|
|dx| = dx · ε dx

|dx|2 . (7.20)

The antisymmetric part of the gradient of displacements is called the small rotation
tensor

ω= 1

2
(∇u−∇uT )= asym(∇u). (7.21)

There are six independent components for the strain tensor. These components
cannot be specified independently [since the strains are related to displacements via
Eq. (7.19)], and satisfy the compatibility equation (expressed in indicial notation)

εij,kl + εkl,ij − εik,j l − εj l,ik = 0. (7.22)

7.2.3 Principle of virtual work

The principle of virtual work is a means to state the ideas of equilibrium and geo-
metric compatibility under a single principle. The principle hinges on two key
ideas. First, the set of three fields {b(x), f (x), σ (x)} is said to be statically ad-
missible state of stress (SASS), if the conditions of Eqs. (7.8), (7.9), and (7.10)
are satisfied. Second, the set of three fields {u0(x), u(x), ε(x)}, where u0(x) is a
vector field of displacements specified on the surface of the body, is said to be a
kinematically admissible state of strain (KASS) if u(x) = u0(x) on S and u(x)

and ε(x) satisfy Eq. (7.19).
The principle of virtual work states that any given SASS and KASS will satisfy

the virtual work equation∫
V

σ : ε dV =
∫

V

b · u dV +
∫

S

f · u dS. (7.23)

The significance of this principle is best understood from the following two theo-
rems.

Theorem of Equilibrium: A state of stress defined by {b(x), f (x), σ (x)} is an
equilibrium state (i.e., an SASS), if it satisfies the virtual work Eq. (7.23) for every
KASS defined on the body.

Theorem of Compatibility: A state of deformation defined by {u0(x), u(x),

ε(x)} is a geometrically compatible state (i.e., a KASS), if it satisfies the virtual
work Eq. (7.23) for every SASS defined on the body.

The principle of virtual work in the form of the theorem of equilibrium is
used widely to construct numerical methods, an example being the finite element
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method briefly discussed in Sec. 7.2.5. Although the discussion here has been based
on a linear formulation, the principle of virtual work is applicable to fully nonlinear
situations as well.

7.2.4 Constitutive relations

The theory thus far has introduced (in three spatial dimensions) six unknown com-
ponents of the stress tensor, six components of the strain tensor, and three displace-
ment components—a total of 15 quantities. In all, the equations available to solve
these are nine, three equilibrium equations [Eq. (7.9)] and six strain-displacement
relations [Eq. (7.19)]. Additional relations are necessary for the solution of the un-
knowns. These are material-specific relations called constitutive relations to relate
the stress tensor to the strain tensor. The study of constitutive relations is a vast
one; and the account presented here is brief.

The constitutive relations are based on three general principles.7 First, the prin-
ciple of determinism states that the stress at any point in the body is determined
uniquely by the entire history of deformation. Second, the principle of local action
states that the stress at any point is determined only by the strain history at that
point, but not by that of any neighboring point. Finally, according to the principle
of objectivity, the constitutive relation must provide for the same material response
for equivalent observers. While the constitutive equations of macroscopic contin-
uum mechanics are developed based on these principles, the principle of local ac-
tion has only a limited validity at the nanoscales. Nonlocal constitutive relations
will be discussed in Sec. 7.4.2.

Present attention is restricted to elastic constitutive relations that satisfy the
principle of local action. A material is said to be hyperelastic if there exists a scalar
function W(ε) such that the stress is given by

σij = ∂W

∂εij

. (7.24)

A material is said to be linearly hyperelastic if there is a fourth-order tensor Cijkl

called the elastic modulus tensor such that

W(ε)= 1

2
Cijklεij εkl, (7.25)

and

σij = Cijklεkl . (7.26)

The elastic modulus tensor has the symmetries

Cjikl = Cijkl, (7.27)

Cijlk = Cijkl, (7.28)

Cklij = Cijkl, (7.29)

which reduce the number of independent components to 21.
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Further reduction in the number of elastic constants is brought about by specific
symmetries of the solid. The number of independent elastic constants for solids
made of different crystal classes9 is given in Table 7.2.

7.2.5 Boundary value problems and finite element method

The key ideas that enable the definition of a boundary value problem (namely,
equilibrium, compatibility, and constitutive relations) have been described in the
previous section. The aim is the determination of the stress, strain, and displace-
ment fields that develop in the body in response to applied forces and displacement
constraints.

The body occupies a region V (as shown in Fig. 7.5) enclosed by the surface S .
The surface S is split into two disjoint parts Sσ on which distributed surface forces
are applied, and Su on which displacements u0 are prescribed. The complete state-
ment of the boundary value problem (for linear elastic materials) is

σij,j + bi = 0 (Equilibrium), (7.30)

εij − 1

2
(ui,j + uj,i)= 0 (Strain displacement), (7.31)

σij = Cijklεkl (Constitutive relations), (7.32)

with boundary conditions on S being

σij nj = fi on Sσ (7.33)

ui = u0
i on Su. (7.34)

Even for the case of the linear elastic boundary-value problem presented here,
analytical solutions are impossible in all but special cases. Powerful numerical
methods have been developed to solve the class of elliptic boundary-value prob-
lems that arise in linear elasticity, using digital computers. The finite element
method has especially found favor in solid mechanics owing to its advantages both
as an approximation scheme for the fields and for representation of the geometry
of the solid. There are several excellent accounts of the finite element methods (for
example, Hughes11 or Zienkiewicz12), and a brief outline is presented here.

Table 7.2 Number of independent elastic constants for different crystal classes.

Crystal No. of Independent Elastic Constants

Triclinic 21
Monoclinic 13

Orthorhombic 9
Tetragonal 7

Rhombohedral 7
Hexagonal 5

Cubic 3

Downloaded from SPIE Digital Library on 18 Jun 2012 to 58.97.130.72. Terms of Use:  http://spiedl.org/terms



Nanomechanics 271

The first step in the finite element method is the discretization of the domain
of definition of the boundary value problem. This is achieved by selecting a set of
points called nodes. The nodes are used to generate elements such that the result-
ing ensemble of nodes and elements closely approximates geometry of the body
under consideration. One possible route is to select nodes and use a Delaunay tetra-
hedrization (in three dimensions) or triangulation (in two dimensions)13 to generate
the elements. A collection of nodes and elements is called a finite element mesh
(see Fig. 7.9).

Associated with the node a is a shape function Na(x), which satisfies the con-
dition

Na(xb)= δab, (7.35)

where xb is the position of node b and δab is the Kronecker delta symbol (δab = 1 if
a = b and vanishes if a 	= b). In particular, Na(x) are chosen such that they vanish
in all elements for which a is not a node. There are several possible choices for Na ,
a common choice being a piecewise linear dependence on x (see Fig. 7.9 for an
illustration in 1D space). The essential idea of the finite element method is to use
the shape functions to construct an approximate form of the displacement field

uh(x)=
∑

a

Na(x)ua, (7.36)

where uh represents an approximate solution and ua are the values of nodal dis-
placements to be determined. Thus, the finite element method reduces the determi-
nation of the displacement field to the determination of a finite number of unknown
quantities. Once the nodal displacements are determined, the approximate value of
the displacement can be obtained at any point in the body using Eq. (7.36). It is
advantageous to represent Eq. (7.36) in matrix form as

uh(x)= {N}T {U}, (7.37)

where {N}T is the array of element shape functions (the elements of which are
spatially dependent functions) and {U} is the array of nodal displacements ua . The

Figure 7.9 A (1D) illustration of a finite element mesh for the interval [a, b] with n nodes and
n− 1 elements; Ni is the piecewise linear shape function centered around the node i.
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strains due to the approximate displacement field can be expressed as

εh(x)= [B]{U }, (7.38)

where [B] is the strain-displacement matrix whose elements are spatial gradients
of the shape functions. Equation (7.38) ensures that the approximate strain fields
are related to the approximate displacement fields via Eq. (7.19). The stresses cor-
responding to these strain fields can be obtained using the constitutive relations

σ h(x)=C[B]{U }, (7.39)

where C is the constitutive matrix.
The strategy to determine the unknown nodal displacements {U} is to enforce

the condition that the approximate stress field [Eq. (7.39)] is an equilibrium field.
This is achieved by exploiting the theorem of equilibrium version of the principle
of virtual work (see Sec. 7.2.3). All possible KASS on the body are defined using
the finite element approximation as

vh(x)= {N}T {V }, (7.40)

where {V } is an array of arbitrary nodal displacements. The strain field eh(x) de-
fined by

eh(x)= [B]{V }, (7.41)

and the displacement field vh(x) form a KASS. Thus, if the virtual work Eq. (7.23)∫
V

eh(x) : σ h(x) dV =
∫

V
vh · b dV +

∫
S

vh · f dS, (7.42)

for every choice of {V } (i.e., for every KASS) where e : σ = eij σij , then the un-
known nodal displacements {U} satisfy the condition

[K]{U} = {P }, (7.43)

where

[K] =
∫

V
[B]T C[B]dV (7.44)

is the called the stiffness matrix, and

{P } =
∫

V
{N}b dV +

∫
S
{N}f dS (7.45)
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is the force vector. Although the expressions for the stiffness matrix and the force
vector involve integrals over the entire body, these integrals can be efficiently eval-
uated element-wise, and the resulting stiffness matrix is generally sparse. This al-
lows the use of fast solvers to obtain numerical solutions of Eq. (7.43).

The presentation here of the finite element method is restricted to linear elastic
problems. The method, however, is capable of treating strongly nonlinear problems
in solids and fluids.12 An example of the application of the finite element method to
a nonlinear problem of crack spalling in a misfitting epitaxial film-substrate system
is shown in Fig. 7.10.

Figure 7.10 Finite element analysis of crack spalling in a misfitting epitaxial film-substrate
system.
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7.3 Atomistic models

Atomistic models explicitly acknowledge the discrete nature of matter, and the
degrees of freedom of these models are the positions of the atoms that make up
the material or structure of interest. The most important ingredient of atomistic
models is the total energy function, i.e., a description to obtain the total energy
of the system when the positions of the atoms are known. Once this function is
known, standard methods of statistical mechanics and/or molecular dynamics are
used to obtain the macroscopic properties of the material. These methods today
have reached a level of sophistication that no input other than some fundamental
constants (electron mass, Planck’s constant, etc.) are required to predict properties,
i.e., atomistic models promise to be truly predictive tools. This section is divided
into two parts. In the first part, methods for calculating the total energy of the
system are described, and simulation techniques (which require a total energy de-
scription) are presented in the second.

7.3.1 Total energy description

The goal of this section is to present methods that enable the calculation of the
potential energy Etot of a collection of atoms given their positions. A collection of
N atoms is considered such that the position of the ith atom is given by xi , and the
function Etot(x1, . . . , xN ) is desired. This potential energy, in reality, is dependent
on the bonding between the atoms (i.e., it depends on the electronic states in the
atomic system) and falls in the realm of quantum mechanics. While such methods
based on quantum mechanics have provided some of the most accurate predictive
models, these are computationally expensive. There are other approaches that do
not treat the electronic states explicitly (during the simulation), but the function
Etot(x1, . . . , xN ) is derived by approximate methods from the underlying quan-
tum mechanics, or by recourse to empirical methods. Both types of methods, i.e.,
the ones that take recourse to explicit treatment of electrons or otherwise, are dis-
cussed. Examples of the former include density functional theory and tight-binding
methods, while the latter include pair potentials, the embedded atom method, etc.

7.3.1.1 Quantum mechanical methods with explicit treatment of elec-
trons

The basic relation of quantum mechanics∗∗ for a particle of mass m moving in a
potential V (r) is given by the Schrödinger equation

Hψ = ih̄
∂ψ

∂t
, (7.46)

∗∗Analogous to Newton’s law in classical mechanics; excellent treatment of quantum mechanics can
be found in books by Schiff14 or Sakurai.15
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where r is the position vector, ψ(r, t) is the wave function of the particle,

H=− h̄2

2me

∇2 + V (r) (7.47)

is the Hamiltonian operator, and h̄ is Planck’s constant. The wave function ψ(r, t)

describes the state of the particle; and, in particular, there are states called station-
ary states, which satisfy the relationship

Hψ =Eψ, (7.48)

where E is the energy eigenvalue.
The body of interest is taken to consist of N ions and M electrons. The po-

sitions of the ions are {xi} and those electrons are {rj }. The electronic states in
this system (under the so-called Born–Oppenheimer approximation, see Szabo and
Ostlund16) are described by the Hamiltonian operator

H=
M∑

j=1

− h̄2

2me

∇2
j +

1

2

e2

4πε0

∑
jk

1

|rj − rk| −
M∑

j=1

N∑
i=1

Zie
2

4πε0

1

|rj − xi| , (7.49)

where ε0 is the permittivity of free space, and Zi is the atomic number of the ith
nucleus. The stationary state of this system is given by

H =E , (7.50)

where  (r1, . . . , rM ) is the many-electron wave function, and E is the energy
eigenvalue. The first term in the Hamiltonian of Eq. (7.49) is the kinetic energy
of the electrons, the second term denotes the Coulombic interaction among the
electrons, and the third term involves the interaction between the electrons and the
ions. The state of the system  g with the lowest energy eigenvalue Eg that satis-
fies Eq. (7.50) is called the ground state. Clearly, the ground state energy depends
parametrically on the positions {xi} of the ions. The total potential energy of the
system can be calculated when the ground state energy is known:

Etot(x1, . . . , xN )=Eg(x1, . . . , xN )+ 1

2

∑
i 	=j

VI−I (|xi − xj |), (7.51)

where VI−I is the direct Coulombic interaction between the ions. Given an atom-
istic system, the determination of total energy as a function of the positions of
the atoms requires the solution of Eq. (7.50). Analytical solution of Eq. (7.50) is
seldom possible for more than one electron.

The mathematical difficulties encountered in the solution of Eq. (7.50) have
prompted the development of several approximation techniques. The earliest of
the approximate methods is due to Hartree and was later modified by Fock; it is
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now commonly known as the Hartree–Fock method.17,18 Other approximate meth-
ods include the tight-binding method discussed in Sec. 7.3.1.3. Density functional
theory, one of the most accurate methods from the point of view of modeling, is
discussed in the next section. This method falls in the class of ab initio methods,
in that only fundamental physical parameters such as electron mass and Planck’s
constant are the necessary inputs.

7.3.1.2 Ab initio density functional theory

A breakthrough in the calculation of the ground state energy of the many-electron
system was achieved by Hohenberg and Kohn,19 who proved a theorem that is the
basis of density functional theory. The Hohenberg–Kohn theorem states that the
ground state energy Eg of the many-electron system is a functional of the electron
density n(r). The electron density is related to the many-body wave function via

n(r)=M

∫
| (r, r2, . . . , rM )|2dr2 . . . drM . (7.52)

The electron density n(r) plays a fundamental role in density functional theory in
that, once the ground state density is specified, the ground state energy, the ground
state wave function and even the Hamiltonian (up to a constant) are uniquely de-
termined.

The Hohenberg–Kohn functional that determines the ground state energy is
typically written as

E[n(r)] = T [n(r)] +U [n(r)] + V [n(r)], (7.53)

where T [n(r)] and U [n(r)] are universal functions that represent the kinetic and
Coulombic energies of the electrons, and V [n(r)] is the functional defined as

V [n(r)] =
∫

n(r)v(r) dV, (7.54)

where v(r) is the potential due to the ions. The function n(r) that minimizes
Eq. (7.53) is the ground state electron density, and the minimum value of the
functional is the ground state energy. The potential v(r) defined in Eq. (7.54) de-
pends parametrically on the position of the ions, and the dependence of the ground
state energy on the positions of the ions can be obtained by the minimization of
Eq. (7.53). A difficulty arises at this stage in that the universal functionals T [n(r)]
and U [n(r)] are not explicitly known.

Kohn and Sham20 overcame this difficulty by introducing a single particle state
defined by wave functions φi(r) as if the the collection of electrons are noninter-
acting. The electronic density is related to the single particle states via

n(r)=
M ′∑
i=1

|φi |2, (7.55)
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where M ′ is a number related to M determined by the fact that each single-particle
state can accommodate two electrons of opposite spin. In terms of the single-
particle states, the kinetic energy functional is approximated as

Ts[n] = − h̄2

2me

M ′∑
i=1

∫
φ∗i (r)∇2φi(r). (7.56)

This form of the kinetic energy functional neglects the correlations between elec-
trons. The Coulombic interaction between the electrons is approximated using the
Hartree approximation UH [with Eq. (7.55) for the density] as

UH [n] = 1

2

e2

4πε0

∫ ∫
n(r)n(r ′)
|r − r ′| dV dV ′. (7.57)

The Hartree approximation for the Coulombic interaction energy between the elec-
trons neglects the exchange effects, i.e., the change in the electrostatic energies that
arise due to the fact that electrons of the same spin are separated in space. The ef-
fects of electron correlations and exchange are clubbed together in one functional
called the exchange-correlation functional Exc[n]. The main approximation that
allows density functional theory to be a viable method is the local-density approx-
imation (LDA)

Exc[n] =
∫

exc(r)n(r) dV, (7.58)

where exc(r) is the value of the the exchange-correlation energy in an electron gas
with homogeneous density n(r). There are several possible choices21 for exc(r).
With the introduction of the single particle orbitals and the local density approxi-
mation, the energy functional of Eq. (7.53) reduces to

E[n] = Ts[n] +UH [n] +Exc[n] + V [n]. (7.59)

Minimization of the functional with respect to the density n [keeping Eq. (7.55)
in view] results in

− h̄2

2me

∇2φi + veff(r)φi = εiφi, (7.60)

where veff is a single-particle effective potential that contains the Hartree poten-
tial, exchange-correlation potential and the potential from the ions [defined in
Eq. (7.54)], i.e.,

veff = vH + vxc + v. (7.61)

Downloaded from SPIE Digital Library on 18 Jun 2012 to 58.97.130.72. Terms of Use:  http://spiedl.org/terms



278 Vijay B. Shenoy

The terms vH = δUH /δn and vxc = δExc/δn depend on the density. Equa-
tion (7.60) for the single particle states of Eq. (7.60) is therefore nonlinear and
solved in a self-consistent fashion.21 Once the single-particle levels are obtained,
the ground state energy, which is the total energy that depends on the positions of
the ions via v(r) defined in Eq. (7.54), can be obtained as

Eg(x1, . . . , xN )=
M ′∑
i=1

εi − 1

2

e2

4πε0

∫ ∫
n(r)n(r ′)
|r − r ′| dV dV ′

+
∫

n(r)[exc(r)− vxc(r)]dV. (7.62)

The practical implementation of density functional theory involves many tech-
niques that have been developed with years of experience.21 One of the standard
methods is to choose a plane wave basis to construct the single particle wave func-
tions. As the consideration of all electrons involved in the solid can be prohibitive,
an alternative approach is to replace the bare ionic potential by a pseudo-potential
that accounts for the core electrons. There are also several corrections and improve-
ments to local density approximations, a short review of which may be found in a
paper by Capelle.22

Density functional theory has found wide use in computer-aided materials de-
sign and nanomechanics. For example, it has been used to understand the mechan-
ics of carbon nanotubes; Fig. 7.11 shows the results of density functional theory
calculations23 that predict symmetry-driven phase transitions in bundles of carbon
nanotubes. Another example24 of its use is the determination of the ultimate ten-
sile strength of MoSe nanowires (Fig. 7.12). An added advantage of using density
functional theory is that the electronic properties can also be simultaneously deter-
mined, as shown in Fig. 7.13 for MoSe nanowires.

The main drawback of the density functional theory is the large computational
resources necessary to carry out meaningful simulations. With the advent of faster
computers, ever larger problems will be addressed with density functional theory.
In the view of the author, density functional theory will be one of the main tools
for theoretical nanomechanics in the years to come.

7.3.1.3 Tight-binding method

Tight-binding approaches to calculating the total energies of a many-electron sys-
tem are another example of methods that provide for an explicit treatment of the
electronic states. The tight-binding method was pioneered by Slater and Koster.25

The basic idea of the tight-binding method is the same as that of the Rayleigh–Ritz
method that is used to determine vibrational frequencies of structures.12

The model consists of ions located at (xi, . . . , xN ) and M electrons (not all
electrons need to be considered, many calculations only treat the valance elec-
trons), and the first step in the model consists of choosing a basis set for de-
scribing the single particle electronic states. Usually, the basis set is made up of
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Figure 7.11 Geometric phase transitions in bundles of carbon nanotubes under hydrostatic
pressure simulated using density functional theory: (a) (10,10) single-walled carbon nan-
otube bundle under zero hydrostatic stress, (b) monoclinic structure with elliptic cross sec-
tion under 2 GPa external pressure, (c) (12,12) single-walled tube under zero stress, and
(d) nanotubes showing polygonalization under a pressure of 6 GPa. (Reprinted with permis-
sion from Ref. 23, © 2002 The American Physical Society.)

Figure 7.12 Model of a MoSe nanowire. (Reprinted with permission from Ref. 24, © 2002
The American Physical Society.)
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Figure 7.13 Electronic structure of MoSe nanowire: (a) band structure of MoSe nanowire;
(b) and (c) band structure with Li adsorbed; (d) charge density plot. (Reprinted with permis-
sion from Ref. 24, © 2002 The American Physical Society.)

atomic orbitals. For example, to study the diamond structure of carbon, a possi-
ble choice of the basis set would be {2s, 2px, 2py, 2pz} centered at each carbon
atom in the model. In general, a basis set is assumed {φα(r − xi )}, (α = 1, . . . , B ,
i = 1, . . . , N ), where α is the index of the atomic orbital, i.e., the basis set consists
of atomic orbitals centered at each of the atoms. Single particle stationary states
ψ(r) are expressed as a linear combination of atomic orbitals (LCAO) as

ψ(r)=
N∑

i=1

B∑
α=1

ciαφα(r − xi ), (7.63)

where ciα are constants yet to be determined.
If H is the Hamiltonian operator of the system, then the single-particle states

are stationary states of functional ∫
ψ∗Hψ dV, (7.64)

subject to the normalization condition∫
ψ∗ψ dV = 1. (7.65)

The unknown constants ciα are determined by extremization of the functional

F [{ciα}] =
∫

ψ∗Hψ dV −E

∫
ψ∗ψ dV, (7.66)
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with respect to the coefficients {ciα}. The procedure results in the eigenvalue prob-
lem

N∑
j=1

B∑
β=1

Hiαjβcjβ =E

N∑
j=1

B∑
β=1

Jiαjβcjβ, (7.67)

where

Hiαjβ =
∫

φ∗α(r − xi )Hφβ(r − xj ) dV (7.68)

are elements of the Hamiltonian matrix, and

Jiαjβ =
∫

φ∗α(r − xi )φβ(r − xj ) dV (7.69)

are the elements of the so-called overlap matrix. In orthogonal tight-binding meth-
ods, the overlap matrix is the identity matrix, or Jiαjβ = δij δαβ .

Once the energy eigenstates are determined, the total electronic energy can be
obtained by filling up the states (accounting for spin and Pauli’s exclusion princi-
ple). Thus,

Etot =
M ′∑

k=1

Ek + 1

2

∑
i,j

VI−I (|xi − xj |), (7.70)

where M ′ is a number dependent on M (determined to account for spin and Pauli’s
principle), Ek are energy eigenvalues obtained from the solution of Eq. (7.67), and
VI−I is the term that is included to account for the “direct” ion-ion interaction.

The tight-binding method outlined here is what is commonly called “empiri-
cal tight binding.” The main ingredients of the tight binding model is the Hamil-
tonian matrix elements Hiαjβ , which depend on the positions of the ions. Usu-
ally, these are constructed using the “two-center approximation,” which assumes
that Hiαjβ depends only on the positions and orientations of the atoms i and j .
Tight-binding methods also have a further “hidden” approximation, in that the
Hamiltonian matrix elements do not depend on the electronic states, i.e., self-
consistency is neglected. More sophisticated tight-binding methods that account
for self-consistency have been developed; for a review of the state of the art in
tight-binding methods, the reader is referred to Goringe et al.27

Tight-binding methods have found wide application in the material modeling.27

Examples of the use of tight binding methods in the area of nanomechanics include
the determination of the structure of fullerenes,26 as shown in Fig. 7.14, and the
formation of carbon nanotubes28 from graphite patches (see Fig. 7.15).

The advantage of tight-binding method is that it enables simulation of larger
systems as compared with density-functional methods. While density functional
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Figure 7.14 Structure of large fullerene balls obtained using the tight binding method.
(Reprinted with permission from Ref. 26, © 1996 The American Physical Society.)

methods are definitely more accurate, tight-binding methods offer an attractive
route to study problems of nanomechanics in the near term.

7.3.1.4 Total energy formulations without explicit treatment of electrons

While the methods that explicitly involve electrons are accurate, they are com-
putationally intensive. There are several approaches that do not require a direct
evaluation of the electronic states. In such approaches, the total energy of a system
is expressed directly as a function of the positions of the atoms. These functions
can be derived either from basic quantum mechanics by “integrating out” the elec-
tronic degrees of freedom or by resorting to empirical methods. Much effort has
been invested in the calculation of effective total energy descriptions—generally
called “interatomic potentials”—that do not require the explicit evaluation of elec-
tronic states. Only representative potential types that have possible application in
nanomechanics are covered here; an excellent summary of such potentials has been
provided by Voter.29 From the point of view of nanomechanics, these methods are
likely to be very coarse, i.e., they should be used to study essential physics and/or
trends but not to obtain quantitative results.

7.3.1.5 Pair potentials

In the pair-potential description, the total energy of the system is considered to con-
sist of purely pairwise interactions between the atoms. The total energy is written
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Figure 7.15 Formation of carbon nanotubes from graphite patches. These figures show
the temporal evolution under various temperature conditions and for different structures of
graphite patches. (Reprinted with permission from Ref. 28, © 2002 The American Physical
Society.)
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as (assuming all atoms are of the same type)

Etot(x1, . . . , xN )= 1

2

∑
ij,i 	=j

V (rij ), rij = |xi − xj |. (7.71)

Examples of the pairwise interaction include the Lennard-Jones potential

V (r)= A

r12
− B

r6
, (7.72)

where the parameters A and B are determined either by quantum mechanical calcu-
lations or by a fit of some experimentally measured properties such as the cohesive
energy and the lattice parameter. The Lennard-Jones potential is especially useful
in describing inert gas solids. Potentials with other analytical forms and potentials
without direct analytical form are used widely to simulate metals. Typically, these
potentials have a finite cutoff distance rcut, i.e., V (r) = 0, r ≥ rcut. If, however, a
part of the potential is due to Coulombic interactions (which is true for ionically
bonded materials such as ceramics), then the potentials are infinite ranged and spe-
cialized techniques such as Ewald summation30 is necessary to compute the sum
in Eq. (7.71).

Pair potentials used to describe metals do not have simple analytical formulas
such as Eq. (7.72). They are derived by considering second-order corrections to
electronic states due to the presence of the ions.31 Early studies using such pair
potentials were key to providing important clues to the understanding of plastic
behavior of metals with body-centered cubic (BCC) structure. It was known ex-
perimentally that the yield stress of single crystal of BCC metals is roughly a hun-
dredth of the shear modulus, while that for the case of face-centered cubic (FCC)
crystals is the order of a thousandth of the shear modulus, i.e., the yield stress as a
fraction of the shear modulus in BCC metals is an order of magnitude larger than
that in FCC metals. Pioneering computer simulations32,33 using pair potentials in a
Na crystal revealed that the core structure (Fig. 7.16) of a screw dislocation in BCC
crystals is nonplanar, i.e., a larger stress is required to move such a dislocation, re-
sulting in a larger yield stress. These simulations are not only important from the
point of view of understanding the plastic behavior of body-centered cubic materi-
als, but also stand out as an important example the use of computer simulations in
understanding material behavior even with simple descriptions such as pair poten-
tials.

Although pair potentials have been extensively used to study materials, they
provide only a very crude description of the total energy. Pair potentials are notori-
ous in underestimating the stacking fault energies,‡ and hence can give erroneous
results for defect cores. Even at the level of elasticity, a purely pairwise description

‡Indeed, a near-neighbor pair potential cannot distinguish between a FCC and a hexagonal close-
packed (FCC) structure!
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Figure 7.16 Nonplanar core structure of a screw dislocation in a body-centered cubic crys-
tal simulated using pair potentials. (Reprinted with permission from Ref. 32, © 1976 The
Royal Society.)

of energy gives rise to the so-called “Cauchy relation” between the elastic con-
stants. In the case of cubic crystals, the Cauchy relation implies that C1212 =C1122
[see Eq. (7.26)].

7.3.1.6 Embedded atom method

The embedded atom method (EAM) was developed by Daw and Baskes34 (see
also, Finnis and Sinclair35) with the aim of alleviating some of the crippling diffi-
culties of pair potentials. The main goal of this method is the inclusion of “many-
body effects” in an approximate fashion.

The construction of the embedded-atom potential is based on the following
ansatz. To a collection of N − 1 atoms, an additional atom is thought to be placed
at the point rN . This new atom interacts with the other atoms (called the “host”) via
the pair potential. In addition, there is an additional energy called the embedding
energy that arises due to the interaction of the new atom with the electron density
at the site rN due to the host. The total energy of the system is equal to the sum of
the pairwise interaction and the embedding energies of all atoms. The total energy
given by the embedded atom method for a collection of atoms (of the same type) is

Etot(x1, . . . , xN )= 1

2

∑
ij,i 	=j

V (rij )+
∑

i

F (ρi), rij = |xi − xj |, (7.73)

where V is a pairwise interaction, F is the embedding function, and ρi is the
electron density at the site xi . The electron density at the site xi is given by

ρi =
∑
j 	=i

ρ(rij ), (7.74)

where ρ(r) is the electron density at a distance r from the nucleus of an atom. The
total electron density at site xi is the sum of electron densities of all of the atoms
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except the ith atom. While the pair-potential description (for atoms of a single
type) requires specification of but one function V (r), the embedded atom method
for the same case requires specification of three functions: V (r), F (ρ), and ρ(r).
There are several approaches to the determination of these three functions. Of par-
ticular importance is the embedding function F (ρ). The approach by Finnis and
Sinclair,35 motivated by the tight-binding method, is to consider F (ρ)∼√ρ, and
fit the other two functions to experimental properties such as the lattice parame-
ter, cohesive energies, and phonon frequencies. Foiles et al.36 used an alternative
approach where, in addition to the fit of the pair potential and electron density
to several experimental parameters, the embedding function is determined so as
to reproduce the universal binding energy relation (UBER) of Rose et al.37 Den-
sity functional theory has also been used to derive embedded atom potentials. For
example, Ercolessi and Adams38 have used forces from density functional calcu-
lations to develop embedded atom potentials for aluminum.

Embedded atom methods have found wide use in materials simulations. The
problems of pair-potential formulations (such as low stacking fault energy and
the Cauchy relations between elastic constants) are absent. In the embedded atom
method, the violation of the Cauchy relation occurs as C1212 − C1122 ∼ F ′′(ρ0),
where ρ0 is the electron density at an atomic site in the crystal. Thus, as long as F

is not a linear function, Cauchy relations are violated. Owing to their ease of use
and reasonable accuracy, embedded atom potentials have been used to study defect
cores,33 fracture,39 etc. A review by Voter39 also contains a lucid account of the
embedded atom method.

7.3.1.7 Three-body potentials

Nanostructures made of carbon (such as carbon nanotubes) are poorly described by
pair potentials or the embedded atom method. This is due to the directional nature
of bonding in these systems. For example, a graphite sheet contains sp2 hybridized
carbon atoms, where bonds make an angle of 120 deg. The change in angles of
these bonds affects the total energy of the system. To describe such nanostructures
using simple potentials (which do not require explicit treatment of the electrons),
three-body interactions have to be introduced in addition to the pairwise term. Con-
ceptually, the total energy in a three-body formulation is given by

Etot(x1, . . . , xN )= 1

2

∑
i 	=j

V (|xi − xj |)+ 1

6

∑
i,j,k

V3(xi , xj , xk), (7.75)

where V3 is the three-body potential. Generalizations beyond the three-body terms
are possible (see Carlsson40).

A commonly used three-body potential is the potential developed by Stillinger
and Weber41 for silicon. The potential contains a pairwise interaction term and a
second term that accounts for the additional energies due to the changes in the
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angle between the bonds. The potential takes the form

Etot(x1, . . . , xN )= 1

2

∑
i 	=j

V (rij )+
∑
ijk

h(rij )h(rij )

(
cos θijk + 1

3

)2

, (7.76)

where θijk is the angle between the i j bond and the i k bond. The function h(r),
which is a pairwise function, decays with a finite cutoff. The potential strongly
favors tetrahedral bonding found in silicon; indeed the potential is not useful in
studying other phases of silicon that are not tetrahedral. This difficulty arises due
to the fact that the potential does not account for the local environments.

This difficulty was overcome by Tersoff42 and Brenner.43 The so-called
Tersoff–Brenner potentials may be thought of as the generalization of the em-
bedded atom potentials or glue potentials in that the local environment of the atom
is accounted for. The functional form of the potential is given by two parts, an
attractive part and a repulsive part, as

Etot(x1, . . . , xN )= 1

2

∑
i 	=j

VR(rij )+ 1

2

∑
i 	=j

Bij VA(rij ), (7.77)

where Bij = B(Cij ) is the bond order with

Cij =
∑

k

hc(rik)f (θijk)h(rij − rik), (7.78)

where θijk is the angle between the i—j and i—k bond, and VR(r), hc(r), f (θ),
and h(r) are functions to be determined. This approach works for a larger class of
environments. However, difficulty arises in determining all the functions involved.
The Tersoff–Brenner potential has been used to study44 mechanisms of plasticity
in single-walled carbon nanotubes (Fig. 7.17).

7.3.2 Atomistic simulation methods

The previous section reviewed the methods for describing the total energies of a
collection of atoms. These methods ultimately provide a function Etot(x1, . . . , xN )

for the total energy that depends on the positions of the atoms, either with explicit
treatment of the electronic degrees of freedom or without. Quantities of interest
such as elastic modulus, fracture toughness, thermal conductivity, and defect core
parameters can be obtained using these techniques for describing total energy.

The atomistic simulation methods are broadly classified into three classes for
the sake of discussion. First is a class of methods that have come to be called lattice
statics. Methods of the second class have their basis in statistical mechanics and are
called Monte Carlo methods. Finally, molecular dynamics methods form the third
class. Lattice statics methods are useful to study properties that are not temper-
ature dependent or have a weak temperature dependence. Monte Carlo methods
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(a)

(b)

(c)

Figure 7.17 Mechanics of plasticity in carbon nanotubes at 2000 K with 10% strain (simu-
lated with Tersoff–Brenner potentials): (a) formation of a pentagon-heptagon defect, (b) split-
ting and diffusion of a defect, and (c) formation of a more complex defect. (Reprinted with
permission from Ref. 44, © 1998 The American Physical Society.)

are extensively used to obtain finite temperature equilibrium properties. Molecular
dynamics methods, based on tracing the temporal evolution of the system, are a
powerful class of methods that find applications in both finite-temperature equilib-
rium and nonequilibrium problems.

7.3.2.1 Lattice statics

When physical quantities of interest are weakly temperature dependent, the lattice
statics method provides the most useful simulation tool. The basic principle of
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this method is the principle of minimum potential energy, i.e., an isolated system
kept under a set of constraints chooses its degrees of freedom such that the total
potential energy of the system is least. Thus, the positions of atoms are determined
such that

∂Etot

∂xi

= 0, i = 1, . . . , N. (7.79)

The minimization of the total energy of the system is achieved by the conju-
gate gradient method and other such methods.21 These are iterative methods that
require the knowledge of the derivatives ∂Etot/∂xi (negative of forces) of the to-
tal energy, in addition to the total energy Etot for a given configuration of atoms;
and these derivatives are used to update the configuration {xi} until the condition
of Eq. (7.79) is satisfied. For ab initio density functional theory and tight-binding
methods, the derivatives are evaluated with the aid of the Hellman-Feynman theo-
rem.21 Analytical expressions for the derivatives are available for non-electronic-
structure methods. For example, the derivative of the energy is given as

∂Etot

∂xi

=
∑
j 	=i

{
V ′(rj i)+

[
F ′(ρi)+ F ′(ρj )

]
ρ′(rj i)

}xj − xi

rij

, (7.80)

for the embedded atom method of Eq. (7.73).
Lattice statics methods have been used extensively to study defect cores. Fig-

ure 7.18 shows the core structure of an edge dislocation in aluminum obtained
using the embedded atom potentials of Ercolessi and Adams.38

Figure 7.18 Core structure of an edge dislocation in aluminum, described by embedded
atom potentials, obtained by lattice statics. Contours represent values of out-of-plane dis-
placements.
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7.3.2.2 Statistical mechanics methods—Monte Carlo method

The determination of temperature-dependent properties of materials and nanos-
tructures is important for predictive capability. Once the total energy function Etot
that depends on the positions of the atoms is known, the temperature-dependent
properties can be calculated by the well-known techniques of statistical mechanics.
A brief discussion of statistical mechanics is included for the sake of completeness.
Detailed expositions can be found in the books by Huang45 or Pathria.46

Equilibrium statistical mechanics deals with systems that have a large num-
ber of microscopic degrees of freedom. The equilibrium state of such a system is
considered, and predictions are made about the quantities that can be measured
experimentally. In particular, different ensembles are used to describe the macro-
scopic conditions experienced by the system. The ensemble of typical interest is
called the canonical ensemble, where the system of interest is kept at a fixed vol-
ume (or, more generally, in a fixed kinematic state) and in contact with a thermal
reservoir at a prespecified temperature. Thus, the system can exchange energy with
the reservoir, and therefore the total energy of the system fluctuates. The tools of
statistical mechanics predict quantities such as the expected value of the energy,
the specific heat, etc.

For the classical canonical ensemble, the probability of a microscopic state
described by a set of parameters C is

P (C)= 1

Z
e−βH (C), (7.81)

where P (C) refers to the probability of realizing the configuration C, H (C) is the
Hamiltonian or the total energy of the system when it is in configuration C, and β is
equal to the reciprocal of the product of the Boltzmann constant k and the absolute
temperature T , i.e., β = 1/kBT . The quantity Z is called the partition function and
is equal to

Z =
∫

e−βH (C) dC. (7.82)

The partition function contains information about all of the observable macro-
scopic quantities. For example, the expected value of the energy U of the system
is given by

U =
∫

H (C)
e−βH (C)

Z
dC =− 1

β

∂ ln Z

∂β
. (7.83)

A very interesting and useful expression relating the partition function to a ther-
modynamic potential (see Huang45 for details) is

Z = e−βA, (7.84)
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where A is the Helmholtz free energy. Thus, statistical mechanics provides a link
between the microscopic configurations that a system can realize and a thermody-
namic potential like the Helmholtz free energy.

For a solid made of N atoms, a microscopic configuration is described by the
positions and momenta of the atoms (x1, . . . , xN , p1, . . . , pN ). The total energy
(or Hamiltonian) of such a configuration is given by

H (x1, . . . , xN , p1, . . . , pN )=Etot(x1, . . . , xN )+
∑

i

p2
i

2m
, (7.85)

where it is assumed that all of the atoms in the solid have mass m, and Etot denotes
the potential energy of the atoms. The second term on the right side of Eq. (7.85)
is the kinetic energy of the atoms. The partition function for this system may now
be evaluated using Eq. (7.85) in Eq. (7.82) to get

Z = 1

N !h3N

∫
e−βH (x1,...,xN ,p1,...,pN ) dx1 . . . dxN dp1 . . . dpN . (7.86)

The factor 1/(N !h3N) first arose to resolve classical paradoxes arising from the
indistinguishability of atoms and to make the theory a correct high-temperature
limit of quantum statistical mechanics, d
 is a volume element in the phase space
of the atomic system. The partition function in Eq. (7.86) gives

Z = 1

N !
(√

2πmkBT

h

)3N

Q, (7.87)

where

Q=
∫

e−βEtot(x1,...,xN ) dx1 . . . dxN (7.88)

is called the configurational integral. Except for the factor Q in Eq. (7.87), all terms
are what would appear in the partition function for an ideal gas; and therefore it is
Q that has all of the contribution due to the interatomic interactions that make up
the solid.

To illustrate the Monte Carlo method, the problem of determining a property g

is considered (for example, g could be the the set of expected values of positions of
atoms near a grain boundary in a problem determining the grain boundary structure
at a finite temperature). It is evident that the expected value of any quantity g that
depends only on the positions of the atoms is given as

〈g〉 = 1

Q

∫
g(x1, . . . , xN )e−βEtot(x1,...,xN ) dx1 . . . dxN . (7.89)

The main idea in the Monte Carlo scheme is that of importance sampling, where
a configuration is accepted or rejected based on its probability of realization. This
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enables an extremely efficient computation of averages, such as that in Eq. (7.89).
Specifically, the following Metropolis algorithm47 is adopted for a single Monte
Carlo step:

1. Select an atom at random.
2. Compute a random vector δ whose magnitude does not exceed a prespeci-

fied value.
3. Compute the change in the potential energy δEtot of the system when the

randomly chosen atom in step 1 is displaced by the random vector δ.
4. If δEtot < 0 then

Accept this configuration;
else
(a) Generate a random number σ uniformly distributed on [0, 1].
(b) If eβδEtot > σ , then accept the new configuration, else keep the old con-

figuration.

A predetermined number NMC of Monte Carlo steps are taken, and averages are
computed. The main point is that the average in Eq. (7.89) can be evaluated as a
simple average over the Monte Carlo steps, i.e.,

〈g〉 = 1

Q

∫
g(x1, . . . , xN )e−βEtot(x1,...,xN ) dx1 . . . dxN ≈ 1

NMC

NMC∑
i=1

gi, (7.90)

where gi is the quantity g evaluated using the configuration at the ith Monte Carlo
step. Equation (7.90) is a very powerful tool in evaluating averages, and this is
what makes the Monte Carlo method useful. The Monte Carlo method, therefore,
provides by far the most accurate method to evaluate averages based on statistical
mechanics.

The Monte Carlo method is particularly attractive in that it does not require
the evaluation of the derivatives of energies, which can be computationally inten-
sive. The main problem in the Monte Carlo method is the obtaining of sufficient
statistical accuracy. For example, the thermodynamics of a defect is governed by
the additional energy that it possesses over the perfect crystal; this would involve
taking a statistical average of the difference of two large numbers, and this excess
energy can be smaller than the fluctuations in the energy. It will require very long
simulations to average out the effect of fluctuations. This problem is even more
serious when computing quantities such as the elastic modulus, which depends di-
rectly on the fluctuations. One other problem involved in using the Monte Carlo
method is that it is difficult to use in a situation that requires the use of nonperi-
odic boundary conditions, thus limiting the problems that are accessible via this
method. For further details on the Monte Carlo method, see Allen and Tildesley.48

A recent example of the use of the Monte Carlo method is the calculation49 of
the temperature dependence of elastic moduli of carbon nanotubes, as shown in
Fig. 7.19.
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Figure 7.19 Temperature dependence of the longitudinal elastic modulus of the carbon nan-
otube shown obtained using Monte Carlo methods from strain fluctuations. (After Grigoras
et al.49)

7.3.2.3 Molecular dynamics

The aim of molecular dynamics methods is to trace the trajectory of the collection
of atoms in its phase space. The desired properties of the material are expressed
as functions of the positions and velocities of the atoms, and evaluated using the
trajectories calculated. The trajectories are calculated by integrating the equations
of motion obtained from the Hamiltonian of Eq. (7.85) as

∂xi

∂t
= ∂H

∂pi

= pi

m
,

∂pi

∂t
=− ∂H

∂pi

=−∂Etot

∂xi

,

(7.91)

where t denotes time. The integration of these equations involve the evaluation of
the forces −∂Etot/∂xi as outlined in Sec. 7.3.2.1.

The most common method for the integration of the equations of motion
[Eq. (7.91)] is the Verlet algorithm.48,50,51 The basic time-stepping scheme in the
Verlet algorithm enables the computation of the positions of the atoms at time
t +�t from previous positions as

xi (t +�t)= 2xi (t)− xi (t −�t)+ (�t)2ai (t), (7.92)
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where ai (t) is the acceleration of the atom i given by

ai =− 1

m

∂Etot

∂xi

. (7.93)

The disadvantage of the Verlet algorithm is that although the positions are calcu-
lated accurately O(�t4), the velocities, which do not explicitly enter the algorithm,
are accurate only to O(�t2). An improved version of the Verlet algorithm called
the “velocity Verlet algorithm” is

xi (t +�t)= xi (t)+ vi (t)�t + �t2

2
ai(�t),

vi

(
t + �t

2

)
= vi (t)+ �t

2
ai(t),

a(t +�t)=− 1

m

∂Etot

∂xi

[{rj (t +�t)}],

vi (t +�t)= vi

(
t + �t

2

)
+ �t

2
ai(t +�t). (7.94)

Performing molecular dynamics simulations involves specifying the initial (t = 0)
positions and velocities of the atoms.

An important point to be noted is that integration of Eq. (7.91) using either
Eq. (7.92) or Eq. (7.94) conserves the total energy of the system (up to, of course,
numerical errors). In the language of statistical mechanics, such an isolated sys-
tem at constant energy is called the microcanonical ensemble. To simulate other
ensembles that correspond to systems of interest, such as the canonical ensem-
ble discussed in Sec. 7.3.2.2 or a constant pressure ensemble, other techniques
are required. A detailed description of such methods may be found in Frenkel
and Smit.52 Attention is focused here on the constant-temperature method due to
Nosé53 and Hoover.54

The so-called Nosé–Hoover thermostat is a means to keep the temperature of
the system as close to the desired temperature T0 as possible. The main idea of
the Nosé–Hoover thermostat is to consider the heat bath as an additional degree of
freedom. In fact, Nose55 proved that the microcanonical ensemble for this extended
system (consisting of the atoms and the heat bath) implies a canonical ensemble
for the collection of atoms. In an equilibrium system, the temperature T of the
collection of N atoms at any time is related to their momenta via the total kinetic
energy

T = 2

3

1

NkB

N∑
i=1

p2
i

2m
. (7.95)

Downloaded from SPIE Digital Library on 18 Jun 2012 to 58.97.130.72. Terms of Use:  http://spiedl.org/terms



Nanomechanics 295

The thermostatted equations modify the second equation of Eq. (7.91) as

∂pi

∂t
=−∂Etot

∂xi

− ζpi, (7.96)

where ζ is called the Nosé–Hoover drag coefficient. The drag coefficient has a
temporal evolution given by

∂ζ

∂t
= 1

τ 2

(
T

T0
− 1

)
, (7.97)

where τ is a time constant associated with the heat bath. The integration of
Eqs. (7.96) and (7.97) produces an ensemble closely approximating a canonical
ensemble.

Molecular dynamics methods are widely used to study a large range of prob-
lems. One of the largest simulations ever performed is a billion atom stimulation by
Abraham56 and coworkers who studied brittle and ductile failure in nanocrystals
(Fig. 7.20).

7.4 Mixed models for nanomechanics

The continuum approach discussed in Sec. 7.2 has the advantages of both concep-
tual simplicity (easier to interpret results) and computational efficiency. However,
continuum theories are of limited use when applied to the atomic scale. Atomistic
models of Sec. 7.3 are accurate and have all of the essential physics necessary for
a complete description of phenomena at the atomic scale. Atomistic models are
computationally intensive and require elaborate postprocessing to obtain the de-
sired physical output. It is therefore advantageous to construct methods that have
efficiency of the continuum approach and the accuracy of the atomistic models.

There are two main approaches to construct mixed models. The first is to start
from a purely atomistic model and to apply continuum approximations. The second
is to modify existing continuum theories so as to have in them essential physics
to capture atomic scale phenomena. This section of the chapter briefly reviews
both approaches. An example of the first approach is the quasi-continuum method,
which uses continuum concepts in an atomistic model to achieve an effective re-
duction in the number of degrees of freedom to be considered. The second part of
this section treats augmented continuum theories, which include nonlocal contin-
uum theories and continuum theories that include effects of free surfaces.

7.4.1 The quasi-continuum method

The quasi-continuum method was developed by Tadmor et al.6 as a nanoscale sim-
ulation method for materials physics. The method is thought of as an approxi-
mation scheme for the atomistic method—quasi-continuum is to atomistics as the
finite element method is to continuum field theories. The guiding philosophy of the
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Figure 7.20 Ductile failure and dislocation patterns near a crack tip in a billion-atom molec-
ular dynamics simulation. (From http://www.llnl.gov/largevis/atoms/ductile-failure/. See also
Abraham.56 Courtesy of University of California, Lawrence Livermore National Laboratory,
and the Department of Energy under whose auspices the work was performed.)
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finite element method (see Sec. 7.2.5) is to create a discrete model from a contin-
uum field theory, while the quasi-continuum method aims to construct a discrete
model with far fewer degrees of freedom than the original atomistic model. The
common aim in this class of methods is to achieve the required reduction in the
number of degrees of freedom to solve the problem at hand. The method described
here57,58 applies only when thermal effects can be neglected, i.e., the method is an
approximation for lattice statics described in Sec. 7.3.2.1

The body under consideration is made of a large number of atoms N (see
Fig. 7.21) to be built up of a variety of different grains with Bravais lattice vectors
schematically indicated. A crystalline reference state is assumed to exist, which
obviates the necessity to store the positions of all of the atoms in the solid. A given
atom in the reference configuration is specified by a triplet of integers l = (l1, l2, l3)

and the grain to which it belongs. The position of the atom in the reference config-
uration is then given as

X(l)=
3∑

a=1

laBµ
a +Rµ, (7.98)

where B
µ
a is the ath Bravais lattice vector associated with grain Gµ and Rµ is the

position of a reference atom in grain Gµ, which serves as the origin for the atoms
in grain Gµ.

Once the deformed positions {xi} of atoms are specified, the total energy is
given by the function (see Sec. 7.3)

Etot =Eexact(x1, x2, x3, . . . , xN )=Eexact({xi}). (7.99)

Figure 7.21 A schematic of a crystalline solid made up of grains Gµ with a reference atom
in each grain and an associated set of Bravais lattice vectors. (After Shenoy et al.58)
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If the number of atoms is large, then the problem can become computationally
intractable.

The first step in the quasi-continuum methodology is the selection of a subset of
atoms called “representative atoms” whose positions are treated as the degrees of
freedom of the system. The second step involves the construction of a finite element
mesh with the representative atoms as the nodes. The (approximated) position of
any other atom can be obtained from the positions of the representative atoms via
the finite element interpolation (see Sec. 7.2.5) as

xh
i =

∑
α

Nα(Xi )xα, (7.100)

where Nα(Xi) is the finite element shape function centered around the represen-
tative atom α [which is also a Finite element method (FEM) node] evaluated at
the undeformed position Xi of the ith atom. The kinematics of the collection of
atoms is completely described in that, on knowing the positions of the represen-
tative atoms, the positions of any other atom in the model can be obtained using
Eq. (7.100).

After necessary kinematic approximation via the selection of the representa-
tive atoms and the construction of the finite element method, the next step in the
process is the construction of an approximate method to evaluate the total energy of
the atomic system that depends on the positions of the representative atoms alone.
Further progress at the present state of development of the method hinges on a cru-
cial assumption. It is assumed that the total energy of the system can be additively
decomposed into energies of individual atoms as follows:

Etot =
N∑

i=1

Ei. (7.101)

Such a decomposition is allowed in the embedded atom method and the pair-
potential formulations discussed in Secs. 7.3.1.5 and 7.3.1.6, respectively, but not
in the case of more sophisticated formulations such as density functional theory
(Sec. 7.3.1.2). Although this decomposition restricts the class of energy function-
als that allow for the approximations discussed herein, the method developed is
nevertheless useful in treating very large systems using the simpler atomistic for-
mulations such as the EAM and pair potentials that would otherwise require the
use of supercomputers. If Eq. (7.101) is used in the computation of the energy runs
over all the atoms in the body, there is no gain in computational time. To achieve a
true reduction in the number of degrees of freedom, the following approximation
is made:

Etot ≈
R∑

α=1

nαEα. (7.102)
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The main idea embodied in Eq. (7.102) surrounds the selection of a set of rep-
resentative atoms, each of which, in addition to providing a complete kinematic
description of the body, are intended to characterize the energetics of a spatial
neighborhood within the body as indicated by the weight nα . In other words, nα

can be thought of as the number of atoms represented by the representative atom α.
The statement of the approximate energy Eq. (7.102) is complete only with the
specification summation weights nα . The problem of the determination of nα is
treated in a manner similar to determination of quadrature weights in the approxi-
mate computation of definite integrals.59 In this context, the goal is to approximate
a finite sum (“definite integral” on the lattice) by an appropriately chosen quadra-
ture rule where the quadrature points are the sites of the representative atoms. The
quadrature rule of Eq. (7.102) is designed such that, in the limit in which the finite
element mesh is refined all the way down to the atomic scale (a limit that is denoted
as fully refined), each and every atomistic degree of freedom is accounted for, and
the quadrature weights are unity (each representative atom represents only itself).
On the other hand, in the far-field regions where the fields are slowly varying in
space, the quadrature weights reflect the volume of space (which is now propor-
tional to the number of atoms) that is associated with the representative atom, and
this is where the continuum assumption is made. The details of this procedure may
be found in Shenoy et al.58

A further energetic approximation in the computation of Eq. (7.102) is made to
simplify the energy calculations. This approximation also makes possible the for-
mulation boundary conditions that mimic those expected in an elastic continuum.
Figure 7.22, which depicts the immediate neighborhood of a dislocation core, mo-
tivates the essential idea of the approximation. The figure shows the atomic struc-
ture near the core of a Lomer dislocation characterized by the pentagonal group
of atoms. If the environments of two of the atoms in this figure, one (labeled A)
in the immediate core region, and the other (labeled B) in the far field of the de-
fect, are considered, it is evident that the environment of atom A is nonuniform
and that each of the atoms in that neighborhood experiences a distinctly different
environment. On the other hand, atom B has an environment that is closely ap-
proximated as emerging from a uniform deformation, and each of the atoms in its
vicinity experiences a nearly identical geometry.

These geometric insights provide for the computation of the energy Eα from
an atomistic perspective in two different ways, depending upon the nature of the
atomic environment of the representative atom α. Far from the regions of strong
nonhomogeneity such as defect cores, the fact that the atomic environments are
nearly uniform is exploited by making a local calculation of the energy in which it
is assumed that the state of deformation is homogeneous and is well-characterized
by the local deformation gradient F [see Eq. (7.14)]. To compute the total energy
of such atoms, the Bravais lattice vectors of the deformed configuration ba are ob-
tained from those in the reference configuration Ba via ba = F Ba . The gradient of
deformation is obtained from the finite-element interpolation of the positions of the
atoms. Once the Bravais lattice vectors are specified, this reduces the computation
of the energy to standard lattice statics.
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Figure 7.22 Atomic structure near the core of a Lomer dislocation in aluminum. The atom
A in the core region experiences an inhomogeneous environment while the environment of
atom B is nearly homogeneous. (After Shenoy et al.58)

In regions that suffer a state of strongly nonuniform deformation, i.e., the de-
formations change on a scale smaller than the intrinsic atomistic scales, such as
the core region around atom A in Fig. 7.22, the energy is computed by construct-
ing a crystallite that reproduces the deformed neighborhood from the interpolated
displacement fields. The atomic positions of each and every atom are given exclu-
sively by x =X+u(X), where the displacement field u is determined from finite-
element interpolation. This ensures that a fully nonlocal atomistic calculation is
performed in regions of rapidly varying F . An automatic criterion for determin-
ing whether to use the local or nonlocal rule to compute a representative atom’s
energy based on the variation of deformation gradient is available.58 The distinc-
tion between local and nonlocal environments has the unfortunate side effect of
introducing small spurious forces, referred to as “ghost” forces at the interfaces
between the local and nonlocal regions. A correction for this problem is discussed
by Shenoy et al.58

With the prescription to describe the kinematics with reduced degrees of free-
dom, and a method to calculate the total energy that depends only on the reduced
degrees of freedom, the quasi-continuum method can be applied to obtain approx-
imate solutions to lattice statics problems by use of standard energy minimization
techniques such as conjugate gradients and Newton-Raphson techniques. There
are several of technical issues that surround the use of either conjugate gradient or
Newton-Raphson techniques, which are discussed in detail in Shenoy et al.58
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An essential prerequisite in constructing the quasi-continuum formulation is an
adaptive capability that enables the targeting of particular regions for refinement
in response to the emergence of rapidly varying displacement fields. As an exam-
ple, during the simulation of nanoindentation, the indentation process leads to the
nucleation and subsequent propagation of dislocations into the bulk of the crystal.
To capture the presence of slip that is tied to these dislocations, it is necessary that
the slip plane be refined down to the atomic scale (see Fig. 7.23). The adaption

(a)

(b)

(c)

Figure 7.23 Automatic adaption process in action for the problem of nanoindentation. (After
Shenoy et al.58)

Downloaded from SPIE Digital Library on 18 Jun 2012 to 58.97.130.72. Terms of Use:  http://spiedl.org/terms



302 Vijay B. Shenoy

scheme enables the natural emergence of such mesh refinement as an outcome of
the deformation history.

The essential points of the approximation scheme presented in this section are

1. A subset of the total number of atoms that make up the body is selected
(representative atoms) and the atoms’ positions are treated as the only un-
knowns. The position of any other atom in the body is then obtained from
a finite element mesh, the nodes of which correspond to the representative
atoms.

2. The energy of the system is also computed with the knowledge of ener-
gies of only the representative atoms. This is accomplished by the rule of
Eq. (7.102).

3. A further approximation in the computation of the energies of the represen-
tative atoms is made where the deformations are approximately homoge-
neous on the scale of the lattice.

4. An adaptive scheme is included to capture evolving deformation.

The quasi-continuum method has been used to study defect nucleation, de-
fect migration, fracture, and dislocation interaction. Figure 7.24 shows a quasi-
continuum simulation of dislocation grain boundary interaction. The model con-
sists of two grains with the top grain bounded by a free surface. A rigid indentor
AB is used to generate dislocations at A. These dislocations move toward the grain
boundary and “react” with it. These reactions and further details of the simulation
may be found elsewhere.58 The significant computational savings obtained by the
use of the quasi-continuum method for this problem is worth noting. The number
of degrees of freedom used in the quasi-continuum method was about 104 while
a complete atomistic model of this problem would have required more than 107

degrees of freedom. The quasi-continuum simulation required about 140 h on a
DEC-Alpha workstation, while a purely atomistic model would have required a
parallel supercomputer. These simulations are based on a generalized 2D formu-
lations (three components of displacements are considered to depend only on two
coordinates). A fully 3D version of the quasi-continuum method has been used to
study60 dislocation junctions (see Fig. 7.25).

The methodology presented here is useful for only zero-temperature simula-
tions. In the present form, the quasi-continuum method can be thought of as an
approach to bridge multiple length scales. Generalizations of this method to in-
clude dynamics must bridge multiple time scales in addition to multiple length
scales. There are several preliminary attempts to solve this problem,61,62 where
a subcyling algorithm is used to coarse grain over time in addition to length
scales. Results of dynamic nanoindentation studied with this technique are shown
in Fig. 7.26.

7.4.2 Augmented continuum theories

A very important phenomenon in nanostructures is the occurrence of the so-called
“size dependence” of properties. In other words, if a property of the material that
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Figure 7.24 Top: Mesh designed to model the interaction of dislocations and a grain bound-
ary. Dislocations are generated at point A by rigidly indenting on face AB of the crystal.
Bottom: Snapshots of atomic configurations depicting the interaction of dislocations with a
grain boundary: (a) atomic configuration immediately before the nucleation of the partial dis-
locations, (b) atomic configuration immediately after the nucleation of the first set of partial
dislocations that have been absorbed into the boundary, and (c) the second pair of nucleated
partial dislocations form a pile-up. (After Shenoy et al.58)

makes up the nanostructure is calculated from a measured response using relations
of standard continuum mechanics, the properties turn out to depend on the size
of the nanostructure (see Fig. 7.4). A further example of this can be seen from
the calculation of the tensile modulus of a plate D from lattice statics simulations
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(a) (b)

(c) (d)

Figure 7.25 Evolution of a dislocation junction under stress simulated by the 3D
quasi-continuum method. (Reprinted with permission from Ref. 60, © 1999 The American
Physical Society.)

(outlined in Sec. 7.3.2.1) compared with the prediction of the continuum theory
Dc, shown in Fig. 7.27. It is evident that the modulus predicted by continuum
theory differs from that of the full atomistic simulations in a very regular fashion;
in fact, the nondimensional difference (D − Dc)/Dc scales as 1/d , where d is
the thickness of the plate. Since (D −Dc)/Dc is a nondimensional quantity, this
observation also implies the presence of an intrinsic length scale d0.

The size dependence of properties can arise from two main causes. The first
cause comprises nonlocal effects in the bulk, and the second is due to the presence
of free surfaces that become increasingly important as the size of the structure
reduces. These two effects are now discussed in the context of elasticity.

Nonlocal continuum theories were pioneered by Eringen63 who relaxed the
principle of local action (see Sec. 7.2.4) that is, sometimes tacitly, assumed in stan-
dard constitutive equations of continuum mechanics. Thus, the stress at a point in
the body depends not on the strain at that point alone, but possibly on the strains at

Downloaded from SPIE Digital Library on 18 Jun 2012 to 58.97.130.72. Terms of Use:  http://spiedl.org/terms



Nanomechanics 305

Figure 7.26 Top: Finite-element mesh for dynamic nanoindentation. Bottom: Results of dy-
namic nanoindentation with subcycling. Contours show the presence of a supersonic dislo-
cation. (After Shenoy.61)

all points in the body. Eringen’s generalization to Eq. (7.26) can be expressed as

σij (x)=
∫

V
Cijkl(x, x ′)εkl(x

′) dV ′, (7.103)
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Figure 7.27 Top: Schematic geometry of the plane strain plate. Bottom: Nondimensional
difference between plate modulus computed atomistically and that predicted by standard
continuum theory. The coefficient of 1/h is obtained by a least-squares fitting procedure to
be −1.7395 Å. (After Miller and Shenoy.64)

where Cijkl(x, x ′) is the nonlocal elastic modulus tensor. Note that nonlocality is
inherent in atomistic models because the energy of any given atom depends on the
positions of other atoms in its neighborhood. In practice, the tensor Cijkl(x, x ′)
vanishes if |x − x′|> rc, and the length rc provides an intrinsic length scale. Non-
local effects become increasingly important if the deformations of the structure
vary strongly over the length scale rc. Using this formation, Eringen63 showed,
among other things, that the stresses near a cracked tip do not go to infinity in
magnitude, as predicted by standard linear elasticity, even while being in agree-
ment with linear elasticity at large distances from the cracked tip. These nonlocal
approaches are likely to prove useful in the development of simple yet useful the-
ories of nanomechanics.

Attention is now turned to the effect of free surfaces that are of increasing im-
portance with the reduction in the size of the structure. A general continuum the-
ory based on this observation has been developed.64,65 Several authors have previ-
ously utilized continuum theories, (although not in the context of nanomechanics,
of solids with surface effects66–68) to study a variety of problems ranging from
diffusive cavity growth in stressed solids to the stability of stressed epitaxial films.

The body V , described by coordinates xi , considered in the augmented contin-
uum theory is bounded by a surface S . It is assumed that the surface S is piecewise
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flat (this assumption eliminates the need to consider contravariant and covariant
components of surface tensors) and is described by coordinates xα for each flat
face. The bulk stress tensor in the body V is denoted by σij and the surface stress
tensor by ταβ . Mechanical equilibrium of a bulk material element implies that the
bulk stress tensor satisfies [Eq. (7.9) with no body forces]

σij,j = 0.

Equilibrium of a surface element necessitates that

ταβ,β + fα = 0, (7.104)

and

ταβκαβ = σij ninj , (7.105)

where ni is the outward normal to the surface, fα is the negative of the tangen-
tial component of the traction ti = σij nj along the α direction of surface S , and
καβ is the surface curvature tensor. The assumption of the piecewise flat surfaces
implies that the surface curvature vanishes everywhere along the surface except at
corners and edges, which must be treated separately. Note that the assumption of a
piecewise flat surface is merely for the sake of mathematical simplicity; the present
theoretical framework is valid for curved surfaces as well.

The kinematics of the body are described by the displacement field ui defined
at every point in the body. The strain tensor εij in the body is obtained using a small
strain formulation as given in Eq. (7.19). The surface strain tensor εαβ is derived
from the bulk strain tensor εij such that every material fiber on the surface has the
same deformation whether it is treated as a part of the surface or as a part of the
bulk, i.e., the surface strain tensor is compatible with the bulk strain tensor.

The final ingredient of the augmented continuum theory is the constitutive re-
lations that relate the stresses to strains. The bulk is considered to be an anisotropic
linear hyperelastic solid [see Eq. (7.25)] with a free energy density W defined and
the stresses derived as in Eq. (7.26). Constitutive relations for the surface stress ten-
sor are more involved. The surface stress tensor is related to the surface energy γ as

ταβ = γ δαβ + ∂γ

∂εαβ

, (7.106)

a relation that is generally attributed to Gibbs,68 also called the Shuttleworth
relation.69 The surface stress tensor can be expressed as a linear function of the
strain tensor as

ταβ = τ 0
αβ + Sαβγ δεγ δ, (7.107)

where τ 0
αβ is the surface stress tensor when the bulk is unstrained [obtained from

Eq. (7.106) with εαβ = 0] and Sαβγ δ is the surface elastic modulus tensor. This
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is an important quantity in that the size dependence of elastic properties will be
shown to be determined by the ratio of a surface elastic constant and a bulk elastic
constant. The constitutive constants Cijkl and Sαβγ δ are external to the augmented
continuum theory; these are determined from atomistic models of materials consid-
ered (Sec. 7.3). Thus, continuum mechanics is augmented to have surface effects,
and surface properties are determined from atomistic simulations.

Values of properties of selected surfaces in two elemental materials are given
in Table 7.3. Note that in some cases the values of surface elastic constants are
negative. While this might be counterintuitive, it must be remembered that the
surface elastic energy need not be positive definite; only the combined energy of
the surface and the bulk must be positive definite.

The theory is illustrated with an example of tensile moduli of prismatic sin-
gle crystal bars. Bars of aluminum and silicon are considered with cross-sectional
geometries, as shown in Fig. 7.28. For the square silicon bar in the aforementioned
orientation, standard continuum theory gives the relationship between the bar force
P and the strain as

P =Dcε =EAε=Ed2ε, (7.108)

Table 7.3 Surface elastic constants and surface stresses for Al and Si. Units are electron
volts per square angstrom. (From Miller and Shenoy.64)

Surface S1111 S1122 τ0
1

(= S2222) (= τ0
2 )

Al [100] −0.495 0.254 0.036
Al [111] 0.324 0.484 0.057
Si [100] −0.761 −0.082 0.0
1× 1

Si [100] −0.665 −0.243 0.038
1× 2

Figure 7.28 Schematic cross sections of the bars considered in augmented continuum the-
ory. (After Miller and Shenoy.64)
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where the elastic modulus of the bulk can be shown to be

E = C11

[
1− 2C2

12

C11(C11+C12)

]
. (7.109)

For the aluminum bar with the diamond cross section, the same expression holds
except that the cross-sectional area is now A= (2

√
2d2)/3 and the expression for

the modulus E is considerably more complicated due to the crystal orientation.
When surface effects are included, the expression for the bar force P becomes

P = 4dτ 0+ (EA+ 4Sd)︸ ︷︷ ︸
D

ε, (7.110)

where S is the surface elastic modulus, which is computed assuming that the Pois-
son contraction of the surface is equal to that of the bulk. The nondimensional
difference between the true tensile modulus and that predicted by standard contin-
uum theory is

D −Dc

Dc

=


4

S

E

1

d
= 4d0

d
for the silicon bar,

3
√

2
S

E

1

d
= 3
√

2d0
d

for the aluminum bar.
(7.111)

Thus the theory identifies the intrinsic length scale to be the ratio of the surface
modulus to the bulk elastic modulus. Figure 7.29 shows plots of (D−Dc)/Dc as a
function of d for the two bars. The Al bar with the (111) free surfaces represents an
important test of the model. In this case, the model predicts a positive value for h0,
and thus an increase in stiffness with decreasing size. Indeed, this is borne out by
the atomistic simulations and the model prediction remains correct.

(a) (b)

Figure 7.29 Nondimensional difference between bar modulus computed atomistically and
that predicted by continuum theory: (a) Al bars and (b) Si bars. (After Miller and Shenoy.64)
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Similar models were developed for bending of plates and bars65 (see Fig. 7.30).
In all cases

D −Dc

Dc

=A
d0

d
, (7.112)

where A is a constant that is determined with the augmented continuum theory,
d is the size scale of the structure, and d0 = S/E, where S is a surface elastic
constant and E is a bulk elastic constant. The use of this theory is envisaged as
follows. The bulk elastic constants and the surface elastic constants (for various
surfaces) of materials of interest can be calculated and tabulated. Then the expres-
sions for the constant A can be worked out for a host of cross-sectional shapes
once and for all. A collection of such information will be useful for the design-
ers of nanomechanical systems in that the need for direct atomistic simulations of
nanoscale structures is obviated. Further improvements of this model are possible
by considering nonlocal elastic effects (especially in the bulk) discussed earlier in
this section.

Figure 7.30 Comparison of the atomistically simulated and theoretical warping functions
based on augmented continuum theory. The solid lines are the contours of the atomistic
result while the dashed lines correspond to the theoretical calculation. The bar is made of
aluminum with a width 2a of 10 lattice constants. (After Shenoy.65)
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7.5 Concluding remarks

This chapter presents a survey of methods used to study mechanics at the atomic
scales. A detailed exposition of these methods can be found in the book by
Phillips.70 While atomistic models presented here are the most accurate methods
for studying problems of nanomechanics, mixed models and augmented continuum
theories are more suitable for conceptual clarity.

Much future work is required to elevate the present theoretical models to the
status of predictive tools. An important point to be noted is that theoretical work
in nanoscience will have to be necessarily interdisciplinary. While this chapter has
not stressed this point, it is well recognized that at the atomic scale all phenomena
are coupled. As an example, it is possible to change the electronic properties of
a carbon nanotube by a simple process of straining—a nanotube can show drastic
changes in its electronic band structure when subjected to strain.71 It is the un-
derstanding of the coupling of properties and the exploitation of such phenomena
that can likely produce useful devices. Thus, a concerted interdisciplinary effort in
gaining theoretical understanding is required if nanotechnology is to live up to its
promise.
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List of symbols

β 1/kBT

γ surface energy
ε0 permittivity of free space
ε small-strain tensor
καβ components of surface curvature tensor
ρ electron density
σ stress tensor
ταβ components of surface stress tensor
ψ electronic wave function
 many-electron wave function
ω small-rotation tensor
∇ gradient operator
ai acceleration of ith atom
b body force
[B] strain-displacement matrix
Cijkl components of elastic modulus tensor
d size-scale of nanostructure
D stiffness of nanostructure determined from atomistics
Dc stiffness of nanostructure determined from continuum theory
Eg ground state energy of many-electron system
Etot total energy of atomistic system
E Green-Lagrange strain tensor
f surface force
F (ρ) embedding energy
F deformation gradient tensor
h Planck’s constant
h̄ h/2π

H Hamiltonian operator
Hiαjβ tight-binding Hamiltonian matrix elements
i

√−1
I unit tensor
Jiαjβ tight-binding overlap matrix elements
kB Boltzmann constant
m mass of atom
me mass of electron
n(r) electron density
n normal vector
Nα finite element shape function associated with node α

{N} shape function matrix
pi momentum vector of ith atom
Q configurational integral
rj position vector of j th electron
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rij distance between atom i and atom j

S surface enclosing a body
t time
t traction vector
T temperature
u displacement vector
V region defining a body
W strain energy density
x position vector in reference configuration
xi position vector of atom i

y position vector in deformed configuration
Z partition function
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8.1 Introduction

Nanoscale fluid mechanics (NFM) is the study of fluid (gas, liquid) flow around and
inside nanoscale configurations. As we are increasingly enabled to study nanoscale
systems, through advanced computations and innovative experiments, it becomes
apparent that the ancient saying τ α παντ α ρει (“everything flows”) remains valid
in the era of nanotechnology. Nanoscale flow phenomena are ubiquitous!

As a start, biology evolves in an environment that is mostly water. While the
percentage of water in human bodies is about 65%, it is generally higher in plants
(about 90%), and even more so in week-old human embryos (up to 97%)! Where
is the water? In human beings, 1/3 of it can be found in the extracellular medium,
while 2/3 of it lies within the intracellular medium, a confined environment that
is typically a few microns in diameter. From the words of Alberts et al., “Water
accounts for about 70% of a cell’s weight, and most intracellular reactions occur in
an aqueous environment. Life on Earth began in the ocean, and the conditions in
that primeval environment put a permanent stamp on the chemistry of living things.
Life therefore hinges on the properties of water.”1

As scientists and engineers develop nanoscale sensor and actuator devices for
the study of biomolecular systems, NFM will play an increasingly important role.
The study of fundamental nanoscale flow processes is a key aspect of our effort
to understand and interact with biological systems. Many biomolecular processes
such as the transport of DNA and proteins are carried out in aqueous environments,
and aerobic organisms depend on gas exchange for survival. The development of
envisioned nanoscale biomedical devices such as nanoexplorers and cell manipu-
lators will require understanding of natural and forced transport processes of flows
in the nanoscale. In addition, it will be important to understand transport processes
around biomolecular sensing devices to increase the probability of finding target
molecules and identifying important biological processes in the cellular and sub-
cellular level in isolated or high background noise environments.

While there can be a large variety of nanoscale systems (from the individual
molecules themselves to the assembly of those molecules into complex structures
such as cellular membranes), it would be a formidable task to try to understand
the essential physics of these systems by peering at every known device. For more
than a century, engineering fluid mechanics has taught us that simple, canonical
experiments, such as the flow around a circular cylinder, can provide us with all
of the fundamental physics needed to understand the flow dynamics of much more
complex systems, such as the aerodynamics of airplanes or the hydrodynamics of
ships. Following this conjecture, one may consider that the study of fundamental
nanoscale flow physics of prototypical configurations will enable further advances
in the development of complex scientific and engineering devices. At the same
time, we are reminded that thousands of airplanes had been flying without the
engineers having understood every minute detail about turbulent flow.

Nanoscale flow physics also affects flows at larger scales in an inherently
multiscaling way. For instance, phenomena such as wall turbulence and aircraft
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aerodynamics are dependent on the behavior of fluids in the near-wall region
of aero/hydrodynamic structures. This near-wall region, the so-called boundary
layer,2 has often been modeled using the highly debated “no-slip condition.” This
condition hinges on nanoscale fluid flow phenomena, which only now have become
amenable to experimental and theoretical investigations.

NFM is a complex and still pristine research subject, mainly because it cannot
be tackled with conventional experimental means and also because no universally
accepted model equation has ever been laid down for such flows. However, re-
search on these frontiers is expected to bring advances that will largely enhance
our understanding and will enable us to develop better engineering devices.

Currently open research issues in computational and experimental NFM can be
categorized into four major tasks, namely,

1. In computational studies, it is important to develop suitable models and ef-
ficient computational tools for the systems that are being simulated. Key
aspects include the development of suitable interaction potentials for mole-
cular dynamics simulations based on experiments and ab initio calculations,
the development of hybrid computational methods such as QM/MM meth-
ods, combining classical molecular mechanics with quantum mechanical
calculations, e.g., Car-Parrinello molecular dynamics,3 and the development
of efficient multiscaling techniques. Specific algorithmic developments in-
volve the treatment of the long-range forces between molecules and the de-
velopment of efficient computational techniques to extend the time-scale of
the simulation as well as to expand the range of solutes and solid substrates
that can be studied.

2. Experimental diagnostic techniques need to be developed to provide quan-
titative information for phenomena that take place in the nanoscale. Tech-
niques and instruments that are able to explore atomistic structures are in-
valuable on this front. The adoption of innovative and interdisciplinary ap-
proaches is necessary to face the challenges of this task.

3. As the third task, we consider the study of prototypical flows to identify
key physical mechanisms such as the degrees of slip and sticking at the
solid-liquid interfaces or to determine the changes in liquid viscosity and
surface tension near the surfaces and inside small pores. Particular flows of
interest involve flows inside nanopores and nanoscale flows as influencing
the interface of nanoscale flows with larger-scale flow phenomena. A suit-
able synergy of experimental and computational techniques will benefit the
problems at hand and the techniques themselves.

4. The fourth task involves the continuous exploration of fundamental and
novel concepts for nanofluidic devices. Through an interdisciplinary ap-
proach and in a combined experimental and computational setting, we can
consider preliminary designs using molecular simulations that need to be
subsequently verified via appropriate experiments. In particular, the large-
scale manufacturing of nanoscale flow devices needs to be addressed as well
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as their interface with microscale devices. Included in these concepts are
biomolecular sieves, nanopores, nanocilia, and nanopumps. These studies
will provide the basis for a rational design of nanoscale biomolecular sen-
sors and actuators.

Several comprehensive review articles have appeared in the area of nanoscale
fluid mechanics, a nonexhaustive list of which is given here. Koplik and Banavar4

presented one of the first reviews discussing the study of phenomena of macroscale
systems from atomistic simulations while Micci et al.5 have reviewed research
of nanoscale phenomena related to atomization and sprays. In recent articles,
Maruyama6 and Poulikakos et al.7 have reviewed molecular dynamics simulations
of micro- and nanoscale thermodynamic phenomena. Moving up to mesoscales,
Gad-el Hak8 and Ho and Tai9,10 presented reviews of the flow in microdevices and
microelectromechanical systems (MEMS) devices. Vinogradova11 and Churaev12

reviewed the slippage of water over hydrophobic surfaces, including general prop-
erties of thin liquid layers.

However, nanotechnology is a very dynamic field and new information is con-
stantly becoming available from improved computational models and experimen-
tal diagnostics. For example, much has changed since the review of Koplik and
Banavar4 on slip boundary conditions: the presence of slip has been demonstrated
in experiments at hydrophobic13 and at hydrophilic surfaces,14 thus casting doubts
on the validity of the no-slip condition. These words of caution must be kept in
mind as well when assessing the works discussed in this review.

The chapter is structured as follows: Sec. 8.2 discusses computational aspects
of NFM. We emphasize that practitioners understand the ramifications of seem-
ingly benign tasks such as the choice of the molecular interaction potentials and
simulation boundary conditions. The simulated physics critically depend on such
choices.

Section 8.3 discusses experimental diagnostics techniques for nanoscale flow
phenomena. The interdisciplinary and innovative approaches of scientists and engi-
neers when probing flows at the nanoscale is exemplified in this topic. Section 8.4
discusses the flow phenomena at the interface of fluids and solids from the NFM
perspective, while in Sec. 8.5 the effects of confinement to fluid mechanics are dis-
cussed. Finally, Sec. 8.6 discusses a selective list of applications where nanoscale
flow phenomena play a critical role.

8.2 Computational nanoscale fluid mechanics

The difficulty of carrying out controlled experiments on nanoscale systems makes
computational studies potent alternatives for characterizing their properties. This
fact has led to several computational studies of nanoscale phenomena using mole-
cular simulations, and many of the advances to date in nanotechnology have come
from theoretical or computational predictions that were later confirmed by experi-
ment (e.g., the metallic and semiconducting nature of carbon nanotubes15).

The goal of computational studies in NFM is to characterize prototypical
nanofluidic systems as well as to explore specific nanoscale flow phenomena that
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may facilitate the development of nanoscale flow sensors and actuators, nanode-
vices capable of manipulating biomolecules in the form of molecular sieves, etc.

The development of efficient solvers for quantum mechanical (QM) and mole-
cular mechanical (MM) simulations has enabled reliable simulation of phenom-
ena involving up to a few thousand atoms. For larger systems, the method of
molecular dynamics (MD) is used to simulate systems that can be described
with up to a few million atoms. However, as nanoscale devices are often embed-
ded in micro- and macroscale systems, the computation of such flows requires a
proper integration of atomistic simulations with computational methods suitable
for larger scales. One of the great challenges in computational NFM is the devel-
opment of efficient computational methods to tackle the large number of time and
space scales associated with NFM. Multiscaling techniques bridging nano and mi-
cro/macroscale flow phenomena may well be very fruitful areas of research in the
near future.

8.2.1 Quantum mechanical calculations

Quantum mechanical phenomena are described by wavelike particles, which are
mathematically represented by a wave function  . The differential equation that
describes their evolution in time was developed in 1925 by Schrödinger:

ih̄
∂

∂t
 = Ê = Ĥ  =− h̄2

2m
∇2 + V (r, t) , (8.1)

where i is the imaginary unit, h̄ is Planck’s constant divided by 2π , the time is
represented by t , and the energy operator is Ê. The Hamiltonian operator Ĥ is the
sum of the potential energy operator V (r, t) and the kinetic energy operator, and m

denotes the mass of the particle. The Schrödinger Eq. (8.1), though mostly used in
its time-independent form, is the basis for the solution of atomistic systems that

• Involve the determining of structural problems, for example, questions re-
garding conformation and configuration of molecular systems as well as
geometry optimizations; and
• Require finding energies under given conditions, for example, heat of forma-

tion, conformational stability, chemical reactivity, and spectral properties.

Analytic solutions of the Schrödinger equations are known only for special cases,
where the potential energy contribution to the Hamilton operator is particularly
simple. For example, this is the case if there is no potential energy contribution
(free particle) or in the case of a single electron in the field of a nucleus (hydrogen
atom).

In more complex situations, the Schrödinger equation has to be solved approx-
imately. The approximation methods can be categorized as either ab initio or semi-
empirical. While ab initio calculations tackle the full form of the equations, semi-
empirical methods replace some of the time-consuming expressions and terms by
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empirical approximations. The parameters for semiempirical methods are usually
either derived from experimental measurements or from ab initio calculations on
model systems. For a detailed introduction into different methods and the accord-
ing approximations, the reader is referred to quantum chemistry text books (e.g.,
Ref. 16).

Note that ab initio methods also depend on appoximations such as the Born-
Oppenheimer approximation17 or the choice of underlying basis sets16 to model
the wave function. While ab initio calculations are independent of fitted parame-
ters and enable us to calculate properties of interest fully deterministically, the main
advantage of semiempirical methods lies in the reduced computational cost, which
enables the simulation of larger systems of one to two orders of magnitude. There-
fore phenomena can be studied on different scales, and size restrictions of ab initio
methods can be overcome.

In the following two sections, we review second-order Møller–Plesset and den-
sity functional theory (DFT) calculations on water interacting with aromatic sys-
tems and we focus the extrapolation of these results to the water graphite interac-
tion. The water graphite interaction is reviewed here as it is of particular interest
in the field of hydrophobic interactions. It provides a prototypical system to study
hydrophobic interactions, which are important in various areas of NFM such as
flow in nanopores and protein folding in aqueous environments.

8.2.2 Ab initio calculations of water aromatic interaction

Feller and Jordan18 used an approach based on second-order Møller–Plesset per-
turbation theory19 to calculate the interaction energy between a water molecule and
a sequence of centrosymmetric, aromatic systems, consisting of up to 37 aromatic
rings. An extrapolation of the results yields an estimated electronic binding en-
ergy of −24.3 kJ mol−1 for a single water molecule interacting with a monolayer
of graphite. In these calculations, the largest sources of uncertainty are the basis
set superposition error, the incompleteness of the basis set, and the assumptions
regarding the extrapolation from the clusters to the graphite sheet.18

The aforementioned estimate of the binding energy of a water molecule to a
graphite sheet is appreciably larger than an experimentally determined estimate18

of −15 kJ mol−1. Nevertheless, this result, along with data presented in the next
section allows to parametrize classical force fields.

The estimate of the water-graphite binding energy from Feller and Jordan18 is
slightly larger than the interaction between two water molecules but still signifi-
cantly lower than the average electronic binding energy of a fully solvated water
molecule, where hydrogen bonding provides a network leading to high binding
energies.

Feller and Jordan18 identified that the most important attractive interactions
are the dipole-quadrupole, dipole-induced dipole (induction), and dispersion con-
tributions in their study of the water-benzene complex. From the underlying data,
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they concluded that the dispersion interaction is critical, contributing of the or-
der of −25 kJ mol−1 to the binding energy. This issue is further discussed in the
following section.

8.2.2.1 Density functional theory calculations

High-order QM calculations, such as the second-order Møller–Plesset19 approach,
reproduce the interaction energy of weakly bound molecular systems reasonably.
However, the systems that can be investigated with these methods are limited in
size due to the high computational cost.

DFT provides an intermediate accuracy at lower computational cost by basing
the calculation of system properties on the electron density. For a detailed intro-
duction to DFT the reader is referred to Ref. 20. For the calibration of interaction
potentials, a DFT study of larger weakly bound systems is of highest interest.

DFT describes hydrogen bonds with reasonable accuracy,21 whereas the de-
scription of weak interactions, generally denoted as dispersion interactions, is not
correctly reproduced. The dispersion energy results from correlated fluctuations
in the charge density, which contribute to the interaction energy even at distances
where electron density overlap is negligible. Since all current DFT energy func-
tionals are approximations based on expressions for local electron density, its gra-
dient, and the local kinetic-energy density,22 they fail to reproduce the dispersion
contribution to the interaction energy.

Anderson and Rydberg23 and Hult et al.24,25 presented an approach to extend
DFT calculations with local or semilocal approximations to include the dispersion
contribution, and Rydberg et al. applied it to graphite.26 Although their model de-
pends on a cutoff to ensure finite polarizabilities at all electron densities,25,27 their
approach is promising with regard to a unified treatement within DFT.

Alternative approaches have been presented by Wu et al.28 and Elstner et al.29

Wu et al.28 concentrated on the interaction between small molecules and presented
a systematic search for a possible simplified representation of the weak interac-
tion in DFT. In Ref. 30, this approach was extended to deal with the interaction
between a flat semiconductor surface and a small molecule. Two distinct models
are discussed that serve to calculate lower and upper bounds to the interaction en-
ergy. The model assumptions are then validated for a water benzene system and the
method is applied to the water graphite case to obtain the lower and upper bound
to the water graphite interaction.

In Wu et al.28 a correction term �Edisp is proposed to account for the contribu-
tion of dispersion energy in the total interaction energy

�Etot =�EDFT +�Edisp, (8.2)

where �EDFT is the DFT interaction energy and �Edisp is a damped correction
term based on the first term of the dispersion energy expansion.31 The dispersion
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energy expansion has the following form:

�Edisp = Cn

rn
gn(r), (8.3)

where Cn denotes the dispersion coefficient, r is the distance between the two
centers of mass, and n is a geometry-specific integer resulting from theoretical
considerations.32,33 In the asymptotic limit, at long distances, it can be shown that
the coefficents for different geometries map onto each other.34 Additionally, the
dispersion energy correction has to be damped by a geometry-specific damping
function gn(r), which is necessary as the dispersion correction diverges at short
range instead of reaching saturation.31,35

The interaction energy between water and graphite can be bound (Fig. 8.1)
as described in Ref. 30. The minimum interaction energy can be computed when
considering graphite as a collection of isolated molecules,33 while an upper bound
can be computed when considering the graphite sheet as an ideal metal.36 To model
an ideal metal, the Jellium model was used, in which the electrons are free to move
while only subject to a homogeneous background charge.

Grujicic et al.39 carried out DFT calculations to analyze the effect on the ion-
ization potential of carbon nanotubes due to the absorbtion of molecules with high
dipole moments as well as clusters of water molecules at the tip of capped (5,5)
metallic armchair nanotubes. The results obtained show that the adsorption ener-
gies of both single- and multimolecule clusters are quite low (typically less than

Figure 8.1 Upper and lower bounds (solid line) to the interaction energy compared with two
force field expressions GROMOS (dotted)37 and Werder et al.38 (– –). The upper bound is
obtained through the assumption of a noninteracting plane of atoms or molecules, whereas
the lower bound is obtained through the assumption of an ideal metal.
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2.9 kJ mol−1). This suggests that the studied adsorbates are not stable and would
most likely desorb quickly. In the same work, in sharp contrast, under a typical
field-emission electric field the adsorbtion energy was found to be substantially
higher making the adsorbates stable.

8.2.3 Atomistic computations

The computational cost of quantum mechanical calculations does not permit sim-
ulations of systems containing more than a few hundred atoms. In this case, the
behavior of the system is modeled using MD simulations. MD involves computing
the trajectories of particles that model the atoms of the system, as they result from
relatively simplified interaction force fields.

MD has been used extensively in the past to model the structural and dynamic
properties of complex fluids. The first MD simulations date back to the mid-1950s
in works of Fermi et al.40 Then in 1957 in Alder and Wainwright,41 the phase dia-
gram of a hard sphere system was investigated. A few years later, Aneesur Rahman
at Argonne National Laboratory published his seminal work on correlations in the
motion of atoms in liquid argon.42 In 1967 Loup Verlet calculated the phase dia-
gram of argon using the Lennard–Jones potential and computed correlation func-
tions to test theories of the liquid state,43,44 and two years later phase transitions in
the same system were investigated by Hansen and Verlet.45 In 1971 Rahman and
Stillinger reported the first simulations of liquid water.46 Since then, MD simula-
tions have provided a key computational element in physical chemistry, material
science, and NFM for the study of pure bulk liquids,47 solutions, polymer melts,48

and multiphase and thermal transport.49–52 The motion of an ensemble of atoms
in MD simulations is governed by interatomic forces obtained from the gradient
of a potential energy function. This so-called force field is an approximation of
the true interatomic forces arising from the interaction of electrons and nuclei.
Thus, the qualitative and quantitative result of MD simulations is intimately re-
lated to the ability of the potential energy function to represent the underlying
system.

Several “generic” force fields have been developed, ranging from general pur-
pose force fields capable of describing a wide range of molecules, such as the
universal force field,53 to specialized force fields designed for graphitic and dia-
mond forms of carbon,54 for covalent systems,55 and models for liquid water.56–59

Several classes of force fields have been developed to account for specific types
of molecules or chemical systems, e.g., for zeolites,60 for biomolecules such
as AMBER61 and GROMOS,37 and CHARMM for proteins,62 or for organic
molecules.63

With an abundance of potentials and parameters to account for interatomic
forces, the user may wish to consider the following criteria for choosing a po-
tential:

• Accuracy: the simulation should reproduce the properties of interest as
closely as possible.
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• Generalization/transferability: the force field expressions should be applica-
ble to situations for which it was not explicitly fitted.
• Efficiency: force calculations are generally the most time-consuming part of

a simulation and they should be as efficient as possible

The proper balance between these criteria depends to a large extent on the system
to be investigated. Thus, for NFM studies that involve chemical reactions, the clas-
sical representation is usually not sufficient and a quantum or a hybrid quantum-
classical technique is required64,65 to capture the breaking and formation of chem-
ical bonds. On the other hand, in large-scale simulations of nonreactive systems,
computational efficiency is essential and simple expressions for the forces will suf-
fice.

Force fields are generally empirical in the sense that a specific mathematical
form is chosen and parameters are adjusted to reproduce available experimen-
tal data such as bond lengths, energies, vibrational frequencies, and density.59,66

Generic force fields are developed to be suitable for a wide range of molecules.
One should be aware of this fact when considering these generic force fields for
the study of a specific system. In this case, it is not uncommon to conduct QM
calculations for a small system in order to calibrate MD potentials for the system
under consideration.

A complementary route to experimental results in developing interaction po-
tentials involves their calibration using simulations from first principles. We exem-
plify this process by considering the problem of water-graphite interactions.18,38

This can be seen as a model problem for more complex water-carbon interac-
tions such as those involved when considering carbon nanotubes as biosensors and
fullerenes as chemical reaction chambers or nanoreactors.67 An added complexity
to this problem is that the behavior of water in confined geometries is drastically
different than in bulk systems.68 Using MD simulations to reliably understand and
analyze such systems, it is important to develop suitable models for the simulation
of water in such environments.

While water-water potentials are well established in the literature,46,56–58 there
are no reliable water-nanotube potentials at the moment. In addition, one may
need to reconsider the water-water potentials when considering its drastic change
in behavior in confined geometries. The starting point for the development of
such potentials is the quantification of the interaction of a single water mole-
cule with a single layer of graphite. The reliablity of existing estimates for the
interaction energy is questionable as they exhibit large variations ranging from
−5.07 kJ mol−1(Ref. 69) to −24.3 kJ mol−1(Ref. 18), leaving a great uncer-
tainty about predicted behavior. Furthermore, there exists surprisingly little ex-
perimental data, with a reported experimentally determined interaction energy18 of
15 kJ mol−1. Werder et al.38 presented a review of recently used interaction poten-
tials for the water-graphite interaction and a linear relationship between the inter-
action energy and the contact angle of water on graphite could be determined. As
there are, however, contradictory measurements of water graphite contact angles,38

the actual interaction still remains an open question.
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8.2.3.1 Molecular dynamics: force fields and potentials

The potential energy function or force field provides a description of the relative
energy or forces of the ensemble for any geometric arrangement of its constituent
atoms. This description includes energy for bending, stretching, and vibrations
of the molecules and interaction energies between the molecules. Classical force
fields are usually built up as composite potentials, i.e., as sums over many rather
simple potential energy expressions. Mostly pair potentials V (rij ) are used, but in
the case of systems where bonds are determining the structure, multibody contri-
butions V (rij , rik) and V (rij , rik, ril) can also enter the expression, thus

U =
∑
i,j

V (rij )+
∑
i,j,k

V (rij , rik)+
∑

i,j,k,l

V (rij , rik, ril), (8.4)

where rij = |ri − rj | is the distance between ith and j th atoms. The contribu-
tion to the interaction potential can be ordered in two classes: intramolecular and
intermolecular contributions. While the former describe interactions that arise in
bonded systems, the latter are usually pair terms between distant atoms.

8.2.3.2 Intramolecular forces

Various intramolecular potentials are used to describe the dynamics of chemical
bonds. The potential

V (rij )= 1

2
Kh(rij − r0)2 (8.5)

is developed from a consideration of simple harmonic oscillators,40 where rij and
r0 denote the bond length and the equilibrium bond distance, respectively. The
force constant of the bond is given by Kh. Alternatively, the Morse potential,70

V (rij )=KM

(
e−β(rij−r0) − 1

)2
, (8.6)

is used, allowing for bond breaking. Here KM and β are the strength and distance
related parameters of the potential.

For coordination centers, i.e., atoms where several bonds come together, usu-
ally bond angle terms are applied including harmonic bending via

V (θijk)= 1

2
Kθ (θijk − θc)2, (8.7)

or the harmonic cosine bending via

V (θijk)= 1

2
Kθ (cosθijk − cos θc)2, (8.8)
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where θijk is the angle formed by the bonds extending between the ith, j th, and
kth atoms, and θc is the equilibrium angle. Dihedral angle potentials are often em-
ployed for systems involving chains of bonded atoms to ensure a consistent repre-
sentation over several centers71,72

V (φijkl)= 1

2

n∑
m=0

Km cos (mφijkl), (8.9)

where the sum can contain up to 12 terms.
As an example, a single-walled carbon nanotube immersed in water was re-

cently described using the Morse, harmonic cosine, and torsion potentials by
Walther et al.73 The torsion potential was fitted to quantum chemistry calculations
of tetracene (C18H12) using density functional theory.74

An alternative to the direct modeling of bonded interactions and intramolecular
forces is to constrain the bond length or bond angle.75 As an example, most water
models consider rigid molecules.76 The high-frequency oscillation of the O H
bonds in water formally requires a quantum mechanical description, and removing
these intramolecular degrees of freedom alleviates the problem. The computational
efficiency is furthermore significantly improved by allowing a 5 to 10 times larger
time step than the flexible models.56 The constraints are imposed using iterative
procedures such as SHAKE,77–79 SETTLE,80 or direct methods.81

8.2.3.3 Intermolecular forces

Commonly applied intermolecular force terms are van der Waals forces described
through a Lennard–Jones 12–6 potential82

V (rij )= 4ε

[(
σ

rij

)12

−
(

σ

rij

)6
]

, (8.10)

where ε is the depth of the potential well and σ is related to the equilibrium dis-
tance between the atoms. The parameters are usually obtained through fitting to
experimental data and/or theoretical considerations. For multiatomic fluids such as
gaseous fluids, the Lorentz-Berthelot mixing rules are often used,47 thus,

εIJ =√εI εJ , σIJ = 1

2
(σI + σJ ), (8.11)

where I and J denote the I th and J th atomic species. However, recent work83 has
shown this approach to be inadequate for accurate liquid simulations, as quantities
like liquid mass density are sensitive to the choice of parameters.

For large surfaces an average 10–4 Lennard–Jones potential may be obtained
by integrating the 12–6 Lennard–Jones over the surface as

V (z)= 4εσ 2

[(
σ π

z

)10

−
(

σ π

z

)4
]

, (8.12)
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where z is the wall normal distance (cf., e.g., Ref. 84). The fast decay of the
Lennard–Jones potential usually enables a spherical truncation of the potential at a
cutoff distance rc. Typical cutoff values are 1.5σ for purely repulsive interactions,
and 2.5σ and 10σ for homogeneous and inhomogeneous systems.

The long-range electrostatic interactions are described through the Coulomb
potential

V (rij )= qiqj

4πε0rij

, (8.13)

where qi and qj refer to the electric charges of the ith and j th atoms, and ε0 is the
permittivity of vacuum. Fractional charges are used for polar molecules, and inte-
gral values are used for monatomic ions. The long-range interaction implied by the
electrostatics requires fast summation techniques, see Sec. 8.2.3.4. To accelerate
the algorithmic development and computational time for homogeneous systems,
the Coulomb potential can be truncated using a smooth tapering of the potential
energy function,85

V (rij )≈ qiqj

4πε0rij

S(rij ), (8.14)

where S(r) is a smoothing function, e.g.,

S(rij )=
{[

1− (rij /rc)2
]2

rij < rc,

0 rij � rc.
(8.15)

Note, however, that the results obtained from MD simulations using a truncation
may be significantly different from results using Ewald summation, in particular
for systems with inhomogeneous charge distributions and for ionic solutions.86 On
the other hand, fast summation techniques may introduce artifically strong cor-
relations in small systems,87 and when employed with potentials calibrated with
truncation, the results using Ewald summation techniques may be less accurate
than using truncation.59,88

8.2.3.4 Computational issues in MD

Molecular dynamics simulations of heterogeneous nanoscale flows may involve
the computation of the interaction of millions of atoms. For example, a cube of
water with an edge length of 20 nm contains approximately one million atoms.
The most time-consuming aspect of MD simulations of large systems is the ac-
curate evaluation of the long-range interactions, which include electrostatic and
dispersion interactions. Without an explicit cutoff, the computational cost scales as
O(N2) for N particles. Efficient algorithms have been devised to reduce the com-
putational cost, ranging from simple sorting already provided by Verlet44 to accu-
rate fast summation techniques such as Ewald summation,89–91 the Particle-Mesh
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Ewald (PME) method,92,93 and the particle-particle particle-mesh technique (P3M)
by Hockney and Eastwood and their colleagues.94–97 While Ewald summation re-
quires O(N1.5) operations, the PME and P3M techniques scale as O(N log N).

To achieve this computational efficiency, the P3M method utilizes a grid to
solve for the potential field (")

∇2"=− ρ

ε0
, (8.16)

where ρ is the charge density field reconstructed from the charges onto a regular
mesh (xm) by a smooth projection

ρ(xm)≈ 1

h3

∑
i

W(ri − xm)qi, (8.17)

and h denotes the mesh spacing. The Poisson equation [Eq. (8.16)] is solved on
the mesh using fast Fourier transforms or efficient multigrid methods with an ef-
fective computational cost that scales as O(N log N) or O(N), depending on the
specific Poisson solver. The electrostatic field is computed from the potential on
the mesh (E = −∇") and interpolated onto the particles to allow the calculation
of the electrostatic interaction

fi ≈ qi

∑
m

W(rm − xi)Em. (8.18)

The P3M algorithm furthermore involves a particle-particle correction term for
particles in close proximity (in terms of the grid spacing) to resolve subgrid scales.

Computations of potential forces employing a grid often involve simulations of
periodic systems in order to take advantage of fast potential calculation algorithms
such as fast Fourier transforms and multigrid methods. In addition, special care
needs to be exercised in grid-particle interpolations so as not to induce spurious
dissipation.

In the last 25 years, a number of mesh-free techniques based on the concept of
multipole expansions have been developed that circumvent the need for simulating
periodic systems and have minimal numerical dissipation. Examples of such meth-
ods involve the Barnes-Hut algorithm,98 the fast multipole method (FMM),99,100

and the Poisson integral method (PIM).101,102 The methods employ clustering of
particles and use expansions of the potentials around the cluster centers with a lim-
ited number of terms to calculate their far-field influence onto other particles. The
savings are proportional to the ratio of the number of terms used in the expansions
versus the number of particles in the cluster and scale nominally as O(N log N). By
allowing groups of particles to interact with each other by translating the multipole
expansion into a local Taylor expansion, the algorithm achieves an O(N) scaling.
It has been argued that the 3D version of the Greengard-Rokhlin algorithm is not
efficient, as it adds nominally a computational cost of O(N × P 4), where P is the

Downloaded from SPIE Digital Library on 18 Jun 2012 to 58.97.130.72. Terms of Use:  http://spiedl.org/terms



Nanoscale Fluid Mechanics 333

number of terms retained in the truncated multipole expansion representation of
the potential field. However, this issue has been resolved by suitable implementa-
tion of fast Fourier transforms.103 Summarizing, these techniques rely on tree-data
structures to achieve computational efficiency. The tree enables a spatial group-
ing of the particles, and the interactions of well-separated particles is computed
using their center of mass or multipole expansions for the Barnes Hut and FMM
algorithm, respectively.

Another advantage in tree-data structures is that they enable us to incorpo-
rate variable time steps and techniques. For example, in hierarchical internal
coordinates,104 some regions may be treated as rigid while only a subset or all
degrees of freedom are considered for others. The Newton–Euler inverse mass op-
erator method was developed for fast internal coordinate dynamics on a million
atoms.104,105 For a recent review of the treatment of long-range electrostatics in
molecular dynamics simulations we refer the reader to Ref. 106.

8.2.3.5 Boundary conditions for MD

For situations involving the simulation of a solvent, the small volume of the com-
putational box in which solvent and other molecules of interest are contained can
introduce undesirable boundary effects if the boundaries are modeled as simple
walls. To circumvent this problem, either the system can be placed in vacuum47 or
a periodic system can be assumed. In this approach, the original computational box
containing the molecular system subject to investigation is surrounded with identi-
cal images of itself. Commonly, a cubic or rectangular parallelepiped box is used,
but generally all space-filling shapes (e.g., truncated octahedron) are possible.47

However, periodic boundary conditions imposed on small systems may introduce
artifacts in systems that are not inherently periodic.87

Stochastic boundary conditions enable us to reduce the size of the system by
partitioning the system into two zones with different functionality: a reaction zone
and a reservoir zone. The reaction zone is the zone intended to be investigated,
while the reservoir zone contains the portion that is of minor interest to the cur-
rent study. The reservoir zone is excluded from MD calculations and is replaced by
random forces whose mean corresponds to the temperature and pressure in the sys-
tem. The reaction zone is further subdivided into a reaction zone and a buffer zone.
The stochastic forces are only applied to atoms of the buffer zone. In Ref. 107, the
application of stochastic boundary conditions to a water model is described and in
Ref. 108, the method is derived.

8.2.3.6 Nonequilibrium molecular dynamics

To study nonequilibrium processes or dynamic problems, such as flows in capil-
laries and confined geometries, nonequilibrium MD (NEMD) is found to be a very
efficient tool. It is based on the introduction of a flux in thermodynamic properties
of the system.47,109 In Ref. 110, NEMD is reviewed with regard to the computation
of transport coefficients of fluids from the knowledge of pair interactions between
molecules. In Ref. 111, rheological issues are addressed focusing on shear thinning
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and the ordering transition. Ryckaert et al.112 compare the performance of NEMD
with Green–Kubo approaches to evaluate the shear viscosity of simple fluids. In
Ref. 113, a modified NEMD approach is presented to ensure energy conservation,
and an elongated flow is studied in Ref. 114 with both spatial and temporal peri-
odic boundary conditions. For detailed background about the underlying statistical
mechanics of nonequilibrium systems, the reader is referred to Ref. 115.

Another form of NEMD is steered molecular dynamics (SMD), applied by
Grubmüller et al.116 to determine the rupture force of proteins. The principle of
SMD is to superimpose a time-dependent force on selected atoms or molecules
such that the molecules or the system are driven along certain degrees of freedom
in order to investigate rare events. A short review is provided by Isralewitz et al.117

8.2.4 Multiscaling: linking macroscopic to atomistic scales

Nanoscale flows are often part of larger scale systems (as, for example, when
nanofluidic channels are interfacing microfluidic domains) and in simulations we
are confronted with an inherently multiscale problem when the nanoscale directly
influences larger scales. The simulation of such flows is challenging, as one must
suitably couple the nanoscale systems with larger spatial and time scales. The mac-
roscale flows determine the external conditions that influence the nanoscale system,
which in turn influences the larger scales by modifying its boundary conditions.

In the macroscale the state of a compressible, viscous, isothermal fluid can be
described by its velocity field u and by its pressure P , temperature T , and density
field ρ. The conservation of the system’s mass, momentum and energy together
with the continuum assumption lead to the compressible Navier–Stokes equations.
The last 50 years have seen extensive research on the numerical simulation of these
flows and a review is beyond the scope of this chapter. These equations inher-
ently involve the computation of averaged quantities of the flow field. Hence, as
in micro- and nanoscale flows, the continuum assumption and/or the associated
constitutive relations eventually break down. Along with them the validity of the
Navier–Stokes equations breaks down. To model a fluid at these scales, a com-
putationally expensive atomistic description is required, such as direct simulation
Monte Carlo (DSMC) for dilute gases or MD for liquids. Both methods are how-
ever subject to enormous CPU time requirements. An example of a recent MD
study involving long simulation times (400 ns, 512 water molecules) is the one by
Matsumoto et al.,118 where they study the formation of ice.

To illustrate these limitations at the example of MD, consider that the time
step δt in a molecular dynamics simulation is dictated by the fastest frequency one
must resolve. For a simulation of pure water, δt = 2 fs when models with fixed
O H bonds and H O H angles are used; in other words, 500 million time steps
are required for 1 µs of simulation time. With the optimistic assumption that the
execution of single time step takes 0.1 s, a total of some 19 months of CPU time is
required.

In this section, we review computational techniques that attempt to overcome
these limitations either by combining the continuum and atomistic descriptions
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or through a mesoscopic model. First, we present the Navier–Stokes equations in
conservation form, since in this form they are amenable to multiscale simulations.
Then, hybrid algorithms are discussed that combine the continuum with atomistic
descriptions. Finally, we discuss a mesoscopic model called dissipative particle
dynamics (DPD).

8.2.4.1 Breakdown of the Navier–Stokes equation at small scales

The conservative form of the Navier–Stokes equations for a control volume V

bounded by a surface S reads2,119

d

dt

∫
V

ρ dV +
∫

S

ρu · n dA= 0, (8.19)

d

dt

∫
V

ρu dV +
∫

S

ρuu · n dA=
∫

S

σ · n dA, (8.20)

with the stress tensor σ for a Newtonian fluid

σik =−P δik + 2µ

(
Dik − 1

3
Dmmδik

)
+ λDmmδik. (8.21)

The rate-of-deformation tensor D is given by

Dik = 1

2

(
∂ui

∂xk

+ ∂uk

∂xi

)
. (8.22)

The parameters µ and λ are the shear and bulk viscosities. To solve Eqs. (8.19)
and (8.20) for a specific domain 
, appropriate boundary conditions must be spec-
ified for ∂
 with normal vector (n). The equations must be complemented by
boundary conditions such as solid, far-field, and porous boundary conditions. Here,
we consider only the velocity boundary condition for solid surfaces. For macro-
scopic systems, it is a classical and widely used assumption that there is no relative
motion between a flowing fluid and a solid boundary, i.e., u= 0 at ∂
. This pos-
tulate is called the no-slip boundary condition.

One of the fundamental questions in the context of micro- and nanofluidics
is the range of validity of the Navier–Stokes equations and of the associated no-
slip boundary condition. This range can be parametrized by the Knudsen number
Kn, which is defined as the ratio between the mean free path and a characteris-
tic length L of the system under consideration. The value of the Knudsen number
determines the degree of rarefaction of the fluid and therefore the validity of the
continuum flow assumption. Note that a local Knudsen number can be defined
when L is taken to be the scale L of the macroscopic gradients120 L= ρ/(dρ/dx).
Until recently, noncontinuum (rarefied) gas flows were only encountered in low-
density applications such as in the simulation of space shuttle reentries. However,
in micro- and even more in nanofluidic applications, such as flows in nanopores or
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around nanoparticles, rarefaction effects are important at much higher pressures,
due to the small characteristic length scales and the large gradients.121 An empir-
ical classification of gas flows is the following.120 For Kn < 0.01, the flow is in
the continuum regime and can be well described by the Navier–Stokes with no-slip
boundary conditions. For 0.01 < Kn < 0.1, the Navier–Stokes equations can still
be used to describe the flow, provided that tangential slip-velocity boundary condi-
tions are implemented along the walls of the flow domain. This is usually referred
to as the slip-flow regime. In the transition regime, for 0.1 < Kn < 10, the consti-
tutive equation for the stress tensor of Eq. (8.21) starts to loose its validity. In this
case, higher-order corrections to the constitutive equations are needed such as the
Burnett or Woods equations, along with higher-order slip models at the boundary.
At even larger Knudsen numbers (Kn > 10), the continuum assumption fails com-
pletely and atomistic descriptions of the gas flow are needed.120 In Sec. 8.4.2, the
slip-flow boundary conditions are discussed in more detail.

8.2.4.2 Hybrid atomistic-continuum computations

To maximize the effectivity of any hybrid scheme, the interface location must be
chosen such that both schemes are valid around it, and such that the extent of the
more expensive scheme is minimized. To locate this interface automatically, a vari-
ety of Navier–Stokes breakdown parameters have appeared in the literature.122–125

These parameters are based on the coefficients of the higher-order terms of the
Chapman–Enskog expansion of the solution of the Boltzmann equation. However,
the validity and the cutoff value of these parameters are not yet very well under-
stood.

An early attempt to extend the length scales accessible in MD simulations of
fluids was undertaken by O’Connell and Thompson.126 In their simulations, the
particle (P ) and continuum (C) regions were connected through an overlap re-
gion (X). The overlap region was used to ensure continuity of the momentum
flux—or equivalently of the stress—across the interface between the P and the
C regions. The average momentum of the overlap particles was adjusted through
the application of constrained dynamics. The continuum boundary conditions at
C were taken to be the spatially and temporally averaged particle velocities.
O’Connell and Thompson126 applied this algorithm to an impulsively started Cou-
ette flow where the P –C interface was chosen to be parallel to the walls. This
ensured that there was no net mass flux across the MD-continuum interface.

As pointed out by Hadjiconstantinou and Patera,127 the scheme proposed by
O’Connell and Thompson decouples length scales, but not time scales. Hadjicon-
stantinou and Patera127 and Hadjiconstantinou128 therefore suggested to use the
Schwarz alternating method for hybrid atomistic-continuum models. The contin-
uum solution in C provides boundary conditions for a subsequent atomistic solu-
tion in P , which in turn results in boundary conditions for the continuum solution.
The iteration is terminated when the solution in the overlap region X is identical
for both the particle and the continuum descriptions. The usage of the Schwarz
method avoids the imposition of fluxes in the overlap region, since flux continuity
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is automatically ensured if the transport coefficients in the two regions are consis-
tent. The Schwarz method is inherently bound to steady-state problems. However,
for cases in which the hydrodynamic time scale is much larger than the molecular
time scale, a series of quasi-steady Schwarz iterations can be used to treat transient
problems.127

Flekkøy et al.129 presented a hybrid model that, in contrast to earlier hybrid
schemes,126,128 is explicitly based on direct flux exchange between the particle re-
gion and the continuum region. This scheme is robust in the sense that it does not
rely on the use of the exact constitutive relations and equations of state to maintain
mass, momentum, and energy conservation laws. The main difficulty in the ap-
proach of Flekkøy et al.129 arises in the imposition of the flux boundary condition
from the continuum region on the particle region. The scheme was tested for a 2D
Lennard–Jones fluid coupled to a continuum region described by the compressible
Navier–Stokes (NS) equations. To ensure consistency and to complement the NS
equations, the viscosity ν and the equation of state p = p(ρ, T ) were measured
in separate particle simulations. The first test was a Couette shear flow parallel to
the P –C interface, and the second test involved a Poiseuille flow where the flow
direction was perpendicular to the P –C interface. In both cases, good agreement
between the observed and the expected velocity profiles was achieved. Wagner
et al.130 extended this work to include the energy equation and applied the tech-
nique to flow in a channel.

Flekkøy et al.131 and Alexander et al.132 studied how the continuum descrip-
tion plays the role of a statistical mechanical reservoir for the particle region
in a hybrid computation. Both studies employed the example of a 1D diffusion
process. Flekkøy et al.131 used a finite difference (FD) discretization of the 1D
(deterministic) diffusion equation coupled to a system of random walkers moving
on a lattice. They found that the size of the particle fluctuations interpolates be-
tween those of an open system and those of a closed system depending on the
ratio between the grid spacing of the FD discretization and the particle lattice
constant. Alexander et al.132 showed that a coupling of the deterministic diffu-
sion equation to a system of random walkers does capture the mean of the den-
sity fluctuations across the particle-continuum interface, but that it fails in cap-
turing the correct variance close to the interface. With a stochastic hybrid algo-
rithm, where the fluctuating diffusion equation is solved in the continuum re-
gion, both the expected mean and variance of the density fluctuations are recov-
ered.

Finally, Garcia et al.125 have proposed a coupling of a DSMC solver embed-
ded within an adaptive compressible Navier–Stokes solver. They have successfully
tested their scheme on systems such as an impulsively started piston and flow past
a sphere. The DSMC method is, however, restricted to dilute particle systems.

8.2.4.3 Mesoscopic models: dissipative particle dynamics

Coarse-grained models attempt to find a mesoscale description that enables the
simulation of complex fluids such as colloidal suspensions, emulsions, polymers,
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and multiphase flows. The initial formulation of the DPD model was given by
Hoogerbrugge and Koelman.133 It is based on the notion of fluid particles rep-
resenting a collection of atoms or molecules that constitute the fluid. These fluid
particles interact pairwise through three types of forces, i.e., the force on particle i

is given by

fi =
∑
j 	=i

[
FC(rij )+ FD(rij , uij )+ FR(rij )

]
, (8.23)

where

• FC represents a conservative force that is derived from a soft repulsive po-
tential, allowing for large time steps.
• The dissipative force FD depends on the relative velocity uij of the particles

to model friction

FD
ij =−γ ωD(rij )(uij · r̂ij )r̂ij , (8.24)

where r̂ij is a unit vector and γ is a scalar.
• Finally, a stochastic force FR

ij models the effect of the suppressed degrees of
freedom in the form of thermal fluctuations of amplitude σ

FR
ij = σ ωR(rij )ξij r̂ij , (8.25)

where ξij is a random variable.

Both FD
ij and FR

ij include r-dependent weight functions ωD and ωR , respectively.
These weight functions and amplitudes σ and γ must satisfy the relations

wD(r)= [
wR(r)

]2
, σ 2 = 2γ kBT (8.26)

to simulate a canonical ensemble.134 A review of DPD applied to complex fluids
was given by Warren.135 Although DPD has had considerable success in simu-
lations of flows with polymers, its formulation has a conceptual difficulty.136,137

First of all, its thermodynamic behavior is determined by the conservative forces
and is therefore an output of the model and not (as desirable) an input. In addition,
the physical scales that are simulated are not clearly defined. Recent reviews on
mesoscale simulations of polymer materials can be found in articles by Glotzer
and Paul138 and Kremer and Müller–Plathe.139

Espanõl and Revenga137 have recently introduced the smoothed dissipative par-
ticle dynamics method (SDPD), which combines elements of smoothed particle
hydrodynamics (SPH) with DPD. SDPD emerges from a top-down approach, i.e.,
from a particle discretization of the Navier–Stokes equations in Lagrangian form
similar to the SPH formulation. Every particle has an associated position, veloc-
ity, constant mass, and entropy. Two additional extensive variables, a volume and
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an internal energy, are associated with every particle. The particle volume enables
us to give the conservative forces of the original DPD model in terms of pressure
forces. Most importantly, the interpolant used in the SDPD formulation fulfills the
second law of thermodynamics explicitly and thus enables the consistent introduc-
tion of thermal fluctuations through the use of the dissipation-fluctuation theorem.
This will, for example, enable us to study the influence of thermal effects in the
formation of bubbles.

8.3 Experiments in nanoscale fluid mechanics

The need for quantitative assessment of NFM has prompted the development of
several novel experimental techniques and the adaptation of existing methodolo-
gies to the study of such phenomena in an interdisciplinary fashion.

As the noncontinuum, molecular structure of the fluids dominates the behavior
of these systems, probing them requires diagnostics that can distinguish tempo-
ral and spatial scales at the atomistic level. Experimental techniques from diverse
scientific fields are finding a “new life” in the area of nanoscale flow diagnos-
tics. Techniques such as nuclear magnetic resonance (NMR) and devices such as
the surface force apparatus (SFA) and the atomic force microscope (AFM) are in-
valuable tools in providing quantitative information that, along with computational
results, probe the physics of NFM. At the same time, techniques such as molecu-
lar tagging that have been successfully implemented in biology are currently being
adapted to monitor flow phenomena in the nanoscale.

8.3.1 Diagnostic techniques for the nanoscale

Nuclear magnetic resonance spectroscopy is increasingly being used to charac-
terize microliter and smaller-volume samples. Substances at picomole levels have
been identified using NMR spectrometers equipped with microcoil-based probes.
These NMR probes that incorporate multiple sample chambers and the hyphen-
ation of capillary-scale separations and microcoil NMR enable high-throughput
experiments. The diagnostic capabilities of NMR spectroscopy have enabled the
physico-chemical aspects of a capillary separation process to be characterized
online.140 Because of such advances, the application of NMR to smaller samples
continues to grow. In particular, NMR techniques have been used extensively in the
examination of diffusion, hydrodynamic dispersion, flow, and thermal convection
under the influence of geometrical confinements and surface interactions in porous
media.141,142 The anomalous character of these phenomena is mostly characterized
by the single-file diffusion behavior expected for atoms and molecules in 1D gas
phases of nanochannels with transverse dimensions that do not allow for the par-
ticles to bypass each other. Although single-file diffusion may play an important
role in a wide range of industrial catalytic, geologic, and biological processes, ex-
perimental evidence is scarce despite the fact that the dynamics differ substantially
from ordinary diffusion.
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Gas-phase NMR has great potential as a probe for a variety of interesting physi-
cal and biomedical problems that are not amenable to study by water or similar liq-
uids. However, NMR of gases was largely neglected due to the low signal obtained
from the thermally polarized gases with very low sample density. The advent of
optical pumping techniques for enhancing the polarization of the noble gases He-3
and Xe-129 has bought new life to this field, especially in medical imaging where
He-3 lung inhalation imaging is approaching a clinical application.143 Meersmann
et al.144 and Ueda et al.145 demonstrate the application of continuous-flow laser-
polarized Xe-129 NMR spectroscopy for the study of gas transport into the effec-
tively 1D channels of a microporous material. The novel methodology makes it
possible to monitor diffusion over a time scale of tens of seconds, often inacces-
sible in conventional NMR experiments. The experimental observations indicate
that single-file behavior for xenon in an organic nanochannel is persistent even at
long diffusion times of over tens of seconds. In Kneller et al.,146 the properties
of the purified multiwalled carbon nanotubes are probed using C-13 and Xe-129
NMR spectroscopy under continuous-flow optical-pumping conditions. Xenon is
shown to penetrate the interior of the nanotubes. A distribution of inner tube di-
ameters gives rise to chemical shift dispersion. When the temperature is lowered,
an increasing fraction of xenon resides inside the nanotubes and is not capable of
exchanging with xenon in the interparticle space.

On a related front, recent years have seen an increase in the number of devices
available to measure interaction forces between two surfaces separated by a thin
film. One such device, the surface forces apparatus, measures static and dynamic
forces (both normal and lateral) between optically transparent surfaces in a con-
trolled environment, and is useful for studying interfacial and thin film phenomena
at a molecular level. The SFA developed by the group of Israelachvilli at the Uni-
versity of California, Santa Barbara, in the late 1970s, is capable of measuring
the forces between two molecularly smooth surfaces made of mica in vapors or
liquids with a sensitivity of a few millidynes (10 nN) and a distance resolution of
about 0.1 nm. The flat, smooth surfaces of mica can be covered to obtain the force
between different materials. The basic instrument has a simple single-cantilever
spring to which the lower silica disk is attached. The lower mica is brought near
the upper mica by a piezoelectric device. If there is some interaction, the distance
between the micas will not be the same as that given by the piezoelectric device.
Therefore, the force is measured indirectly by the difference in the gap distance
given, on one hand, by the piezoelectric device and, on the other hand, by that
measured directly by interferometry (attractive forces make the micas closer and
repulsive forces try to repell the micas). Interferometry is used in the SFA to mea-
sure the distance between the two surfaces of interest with high accuracy down to
1/1000 of a wavelength.147

Multiple-beam interferometry148 uses intense white light, which is sent nor-
mally through the surfaces in the SFA. Each surface has a highly reflecting silver
coating on one side, therefore, both surfaces form an optical cavity. The white
light is reflected many times from these mirrors before it leaves the interferometer,
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each time interfering with the previously reflected beams. Some particular wave-
lengths fit an exact integral number of times inside the interferometer and lead to
constructive interference. The light emerging from the interferometer is sent to a
spectrograph, and it consists of well-defined wavelengths that fit an exact number
of times into the optical resonator in the form of curved fringes.

The SFA has been used in many NFM studies.149 The instrument relies on hav-
ing a very low surface roughness over a very large interaction area. As the liquid is
confined in spaces of 4 to 8 molecular diameters, between two macroscopic, molec-
ularly smooth surfaces, it is forced into a discrete number of layers. SFA is the only
apparatus thus far to demonstrate the continuous measurement of solvation forces
in water as a function of surface-surface separation. However, most measurements
have been limited to mica, a hydrophilic and chemically unreactive surface with no
lateral characterization of the two surfaces possible or relevant.

The SFA is often used to investigate both short-range and long-range forces re-
lated to colloidal systems, adhesive interactions, and specific binding interactions.
In addition, the SFA can be used to measure the refractive index of the medium
between surfaces, adsorption isotherms, capillary condensation, surface deforma-
tions (due to surface forces), and dynamic interactions such as viscoelastic and fric-
tional forces and the rheological properties of confined liquid films. Most notable
studies involve the study of the no-slip boundary condition.150,151 In these stud-
ies Newtonian alkane fluids (octane, dodecane, tetradecane) were placed between
molecularly smooth surfaces that were either wetting (muscovite mica) or rendered
partially wetted by adsorption of surfactants. The measured hydrodynamic forces
agreed with predictions from the no-slip boundary condition when the flow rate
was low but implied partial slip when it exceeded a critical level. A possible mech-
anism by which “friction modifiers” operate in oil and gasoline was identified. In
a related study using the SFA, water confined between adjoining hydrophobic and
hydrophilic surfaces (a Janus interface) is found to form stable films of nanome-
ter thickness that have extraordinarily noisy responses to shear deformations.152

From these studies the physical picture emerges whereas surface energetics en-
courage water to dewet the hydrophobic side of the interface, and the hydrophilic
side constrains water to be present, resulting in a flickering, fluctuating complex.
Difficulties with SFA measurements in thin films due to nanoparticles has been
highlighted in Ref. 153. The authors propose that density anomalies in the thin
liquid films are ultimately coupled to the presence of local-surface nonparalellism
and the nanoparticles that are produced during the widely used mica-cutting pro-
cedure.

An optical technique for visualization in the nanoscale involves the measure-
ment of the index of refraction. Kameoka and Craighead154 reported fabrication
and testing of a refractive index sensor based on photon tunneling in a nanofluidic
system. The device comprises an extremely thin fluid chamber formed between two
optically transparent layers. It can be used to detect changes in refractive index due
to chemical composition changes of a fluid in the small test volume. Because the
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physical property measured is a refractive index change, no staining or labeling
is required. The authors have tested the device with five samples, water and wa-
ter with 1% ethanol, 2% ethanol, 5% ethanol, and 10% ethanol. The sensing was
done by measuring the intensity of a reflected laser beam incident on the sensing
element at around the critical angle.

Shadowgraphing techniques have been used to investigate the nonlinear optical
properties of carbon nanotube suspensions in water and in chloroform for optical
limiting.155,156 Carbon nanotube suspensions are known to display interesting op-
tical limiting properties as a result of the formation of solvent or carbon-vapor
bubbles that scatter the laser beam. The main effect is nonlinear scattering, which
is due to heat transfer from particles to solvent, leading to solvent bubble formation
and to sublimation of carbon nanotubes. A clear correlation between the radius of
the scattering centers and the evolution in transmittance of the sample has been
observed. Also, the presence of compression waves that propagate parallel to the
laser beam and can produce secondary cavitation phenomena after reflection on the
cell walls has been observed.

Near-field scanning optical microscopy157 helps extending measurements to
the nanoscale for the optical characterization of thin films and surfaces. In this
technique a light source or detector with dimensions less than the wavelength (λ)
is placed in close proximity (<λ/50) to a sample to generate images with resolu-
tion better than the diffraction limit. Betzig et al.158 developed a near-field probe
that yields a resolution of approximately 12 nm (λ/43) and signals approximately
104- to 106-fold larger than those reported previously. In addition, image contrast
is demonstrated to be highly polarization dependent. With these probes, near-field
microscopy appears poised to fulfill its promise by combining the power of optical
characterization methods with nanometric spatial resolution. In Reitz et al.,159 a
near-field scanning optical microscope system was implemented and adapted for
nanoscale steady-state fluorescence anisotropy measurements. The system as im-
plemented can resolve about 0.1-cP microviscosity variations with a resolution of
250 nm laterally in the near field, or approximately 10 µm when employed in a
vertical scanning mode. The system was initially used to investigate the extent of
microviscous vicinal water over surfaces of varying hydrophilicity.

Closed carbon nanotubes provide a unique opportunity for in situ transmission
electron microscope (TEM) study of the chemical interactions between aqueous
fluids and carbon. High-resolution in situ studies of an interface between fluid and
carbon in TEM have been reported by Gogotsi et al.160–162 and Megaridis et al.163

(Fig. 8.2). Both groups reported that using hydrothermal synthesis produced closed
hydrophilic multiwall carbon nanotubes filled with aqueous fluid. Strong interac-
tion between the liquid and walls, intercalation of nanotubes with O H species,
and dissolution of walls on heating have been demonstrated.

After considerable success in biological systems, molecular tagging is being
investigated as a means to probe flow phenomena in the nanoscale. In Gendrich
et al.,164 the development and applications of a new class of water-soluble com-
pounds suitable for molecular tagging diagnostics are described. These molecular
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Figure 8.2 TEM microgrpahis showing an aqueous solution trapped in a closed multiwalled
carbon nanotube. (From Gogotsi et al.162)

complexes are formed by mixing a lumophore, an appropriate alcohol, and cy-
clodextrin. Using 1-BrNp as the lumophore, cyclohexanol is determined to be the
most effective overall among the alcohols for which data are currently available.
Information is provided for the design of experiments based on these complexes
along with a less complex method for generating the grid patterns typically used
for velocimetry. Implementation of a two-detector system is described that, in com-
bination with a spatial correlation technique for determining velocities, relaxes the
requirement that the initial tagging pattern be known a priori, eliminates errors
in velocity estimates caused by variations in the grid pattern during an experi-
ment, and makes it possible to study flows with nonuniform mixtures. Fluorescent
tagging165 has been used to track carbon nanotubes.166 Modification of the sur-
face of single-walled carbon nanotubes by using polymers enables the nanotubes
to be distinctly visualized in solvents by fluorescence microscopy. Electrophoresis
of the polymer-modified nanotubes under an alternating electric field was observed
in real time, and a scanning electron microscopy image of the resultant nanotubes
trapped on the electrodes revealed the consistency of the modification. This mod-
ification method will facilitate fabricating nanotube-based devices that can be de-
tected with high sensitivity using simple light microscopes. A similar technique
has been applied to fluorescent nanoparticles, enabling subnanometer precision by
use of off-focus imaging.167

Information on the properties of liquids at surfaces at the nanoscale is also
required to elucidate the mechanisms behind macroscopic observations. For ex-
ample, there are few techniques for the study of contact angles at nanoscale reso-
lution. The minimum drop size that can be accurately measured using a standard
low-magnification goniometer is 1 mm. Confocal laser scanning fluorescence mi-
croscopy (CLSM) has recently been used to study the contact angles of thin oil
films doped with a fluorescent dye.168 Apart from an improvement in resolution
over standard optical microscopy, CLSM has the ability to measure depth pro-
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files and therefore can obtain accurate contact angles over the full range of angles.
However, the liquid drops must be transparent and able to solvate the fluorescent
dye.

8.3.2 Atomic force microscopy for fluids at the nanoscale

Oscillatory forces between two approaching surfaces in a solvent have long been
the subject of study due to their possible influence on any surface-surface inter-
actions mediated through a liquid or in the presence of a fluid film. Of particular
interest is water, due to its omnipresence in all but the most stringently controlled
environments and its role as the primary medium for biological interactions. The
AFM was pioneered169 to image the topography of surfaces, but is now becoming
an important tool for investigating water-surface interactions.

As described in Ref. 170, both for the original (static) version of the SFA and
for the AFM, the force is obtained from the deflection of a measuring spring or
cantilever. However, in contrast to the SFA, wherein the cantilever deflection is
detected interferometrically, the AFM uses electronic or digitally analyzed optical
methods to sense deflections. Another difference is that various electronic tech-
niques are used to control the motion of the surface. Moreover, in the case of the
AFM the deflection versus the position of the piezo curves are much more sensi-
tive at high speed than the SFA separation versus time curves. Hence, the AFM is
much more convenient than the SFA for studying the highly dynamic phenomena
in a thin gap.

The AFM has been developed and modified over recent years, utilizing differ-
ent operating principles to explore a wide range of surface properties. Techniques
such as tapping mode AFM (TMAFM), noncontact scanning force microscopy
(NSFM) and scanning polarized force microscopy (SPFM), which were developed
to image soft samples and weakly absorbed species are finding applications for
the study of fluids in the nanoscale. Luna et al.171 reported on a study of water
droplets and films on graphite by NSFM. In a high-relative-humidity atmosphere
(>90%), water adsorbs on the surface to form flat rounded islands of 5 nm in
height that transform to 2-nm-high islands when the relative humidity stabilizes to
90%. This process is induced by the presence of the scanning tip. Desorption of
the water present on the surface is achieved after the exposure of the sample to
a dry atmosphere for several hours. The adsorption-desorption cycle is reversible.
In addition to topography, TMAFM can probe the micromechanical behavior of a
solid surface by analyzing the vibrational phase shift and amplitude of the probe
as it interacts with the surface, providing information on viscoelastic and adhe-
sive properties. In Attard et al.,172 nanobubbles, whose existence on hydrophobic
surfaces immersed in water has previously been inferred from measurements of
long-ranged attractions between such surfaces, were directly imaged by TMAFM.
Imaging of hydrophobic surfaces in water with TMAFM reveals173 them to be
covered with soft domains, apparently nanobubbles, that are close-packed and ir-
regular in cross section, have a radius of curvature of the order of 100 nm, and
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have a height above the substrate of 20 to 30 nm. Complementary force measure-
ments show features seen in previous measurements of the long-range hydrophobic
attraction, including a jump into a soft contact and a prejump repulsion. The dis-
tance of the jump is correlated with the height of the images. The morphology of
the nanobubbles and the time scale for their formation suggest the origin of their
stability. TMAFM has also recently been employed to measure the contact angle
of dewetted liquid bilayer thin films of two immiscible polymers, polystyrene and
polybromostyrene.174

Ishida et al.175 inserted an immersed silicon wafer hydrophobized with OTS
into water to observe the surface in situ using a tapping-mode AFM. A large num-
ber of nanosize-domain images were found on the surface. Their shapes were
characterized by the height image procedure of AFM, and the differences of the
properties compared to those of the bare surface were analyzed using the phase
image procedure and the interaction force curves. All of the results consistently
implied that the domains represent the nanoscopic bubbles attached to the surface.
The apparent contact angle of the bubbles was much smaller than that expected
macroscopically, and this was postulated to be the reason bubbles were able to sit
stably on the surface. Further studies of nanobubbles produced at liquid-solid in-
terfaces using the AFM have been reported.176,177 The atomic force microscope
used to detect these nanobubbles showed that they can be seen on liquid-graphite
and liquid-mica interfaces. The conformation of the bubbles was influenced by the
atomic steps of the graphite substrate.

The AFM was employed in various complementary modes of operation to in-
vestigate the properties of nanometer-scale oil droplets existing on a polystyrene
surface. Force curve mapping was used to gently probe the surface of the fluid
droplets, and through automated analysis of the force curves the true topography
and microscopic contact angle of the droplets were extracted. The interfacial ten-
sion of this oil-water junction was then measured using the AFM and again was
found to be in close agreement with theory and macroscopic measurement. Us-
ing this information, the force exerted on the sample by a scanning tapping tip
in fluid was derived and compared with forces experienced during tapping mode
imaging in air. These results highlight the ability of AFM to both measure inter-
facial properties and investigate the topography of the underlying substrate at the
nanometer scale.174 Mugele et al.178 used an AFM to image liquid droplets on
solid substrates and to determine the contact line tension. Compared to conven-
tional optical contact angle measurements, the AFM extends the range of accessi-
ble drop sizes by three orders of magnitude. By analyzing the global shape of the
droplets and the local profiles in the vicinity of the contact line, it was shown that
the optical measurement overestimates the line tension by approximately four or-
ders of magnitude. Zitzler et al.179 investigated the influence of the relative humid-
ity on amplitude and phase of the cantilever oscillation while operating an AFM
in the tapping mode. If the free-oscillation amplitude exceeds a certain critical am-
plitude A(c), the amplitude- and phase-distance curves show a transition from a
regime with a net attractive force between tip and sample to a net repulsive regime.
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For hydrophilic tip and sample, A(c) is found to increase with increasing relative
humidity. In contrast, no such dependence was found for hydrophobic samples.
Numerical simulations show that this behavior can be explained by assuming the
intermittent formation and rupture of a capillary neck in each oscillation cycle of
the AFM cantilever.

The use of the AFM is limited by the formation of nanomenisci and nano-
bridges. Colchero et al.180 described a technique to measure the tip-sample inter-
action in a scanning force microscope setup with high precision. Essentially, the
force exerted on the cantilever is acquired simultaneously with a spectrum of the
cantilever. This technique is applied to study the behavior of the microscope setup
as the tip approaches a sample surface in ambient conditions. The measured in-
teraction can only be understood assuming the formation of a liquid neck and the
presence of a thin liquid film on the tip as well as on the sample. Piner et al.181

developed a direct-write “dip-pen” nanolithography (DPN) to deliver collections
of molecules in a positive printing mode. An AFM tip is used to write alkanethi-
ols with 30-nm-linewidth resolution on a gold thin film in a manner analogous to
that of a dip pen. Molecules are delivered from the AFM tip to a solid substrate of
interest via capillary transport, making DPN a potentially useful tool for creating
and functionalizing nanoscale devices.

Calleja et al.182 studied the dimensions of water capillaries formed by an ap-
plied electrical field between an atomic force microscope tip and a flat silicon sur-
face. The lateral and vertical dimensions of the liquid meniscus are in the 5 to
30-nm range. The size depends on the duration and strength of the voltage pulse.
It increases by increasing the voltage strength or the pulse duration. The meniscus
size is deduced from the experimental measurement of the snap-off separation. In
AFM studies of molecular thin films, a defined jump of the tip through the film is
often observed once a certain threshold force has been exceeded. Butt and Franz183

presented a theory to describe this film rupture and to relate microscopic parame-
ters to measurable quantities. These models were later verified in Ref. 184.

Ahmed et al.185 reported on studies aimed at employing AFM to measure the
viscosity of aqueous solutions. At ambient temperature, the AFM cantilever un-
dergoes thermal fluctuations that are highly sensitive to the local environment. The
measurements revealed that variations in the resonant frequency of the cantilever
in the different solutions are largely dependent on the viscosity of the medium. An
application of this technique is to monitor the progression of a chemical reaction
where a change in viscosity is expected to occur.

With magnetically activated AFM it has been possible to resolve molecular
layers of large molecules such as octamethylcyclotetrasiloxane and n-dodecanol.
With this method, magnetic material is deposited directly behind an AFM tip on
the backside of the cantilever so that the tip position can be controlled by the addi-
tion of a magnetic field. The lever can be vibrated in an oscillating magnetic field
in order to make dynamic measurements. One expected consequence of the suc-
cess of this technique was a rapid exploitation of the experimental advantages over
SFA such as various surface materials that can be studied and simultaneous lateral
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characterization. However, the current literature is restricted to measurements as a
function of separation between a silicon tip and a mica or graphite surface. Further,
using magnetically activated AFM it has not yet been possible to reproduce the sol-
vation shell measurements in water measured by SFA. Jarvis et al.186 attribute this
to the long averaging times necessary to obtain a sufficiently sensitive signal-to-
noise ratio using a lock-in amplifier and also because of the low aspect ratio tips
commonly used.

One report of water layer and/or hydrated ion measurements using static AFM
is that of Cleveland et al.187 They show that with sufficiently long measurement
times and sufficient stability it is possible even with static measurements to pin-
point different energy minima close to ionic crystals in water by using the thermal
noise of the cantilever. Unfortunately, due to the long averaging times needed for
this technique it is not readily applicable to location sensitive investigations. When
the AFM is used for force measurements, the driving speed typically does not ex-
ceed a few microns per second. However, it is possible to perform the AFM force
experiment at a much higher speed. In Ref. 149, theoretical calculations and exper-
imental measurements are used to show that in such a dynamic regime the AFM
cantilever can be significantly deflected due to viscous drag force. This suggests
that in general the force balance used in a surface force apparatus does not apply
to the dynamic force measurements with an AFM. Vinogradova et al.149 also de-
veloped a number of models that can be used to estimate the deflection caused by
viscous drag on a cantilever in various experimental situations. As a result, the con-
ditions when this effect can be minimized or even suppressed are specified. This
opens up a number of new possibilities to apply the standard AFM technique for
studying dynamic phenomena in a thin gap.

8.4 Fluid-solid interfaces at the nanoscale

Hydrophobic effects and wetting phenomena have a long-standing history and open
questions remain for both areas. The emphasis in this section is on the computa-
tional efforts to understand the molecular nature of wetting and hydrophobicity. For
recent reviews on the general molecular theory of hydrophobic effects, the reader
is directed to the works by Pratt188 and Pratt and Pohorille.189

8.4.1 Hydrophobicity and wetting

The attribute hydrophobic (water-fearing) is commonly used to characterize sub-
stances like oil that do not mix with water. The classical interpretation of this phe-
nomenon is that the interaction between the water molecules is so strong that it
results in an effective oil-oil attraction. Interestingly, oil and water do in fact attract
each other, but not nearly as much as water attracts itself. Lazaridis190 performed a
series of MD simulations with hypothetical solvents to identify the solvent charac-
teristics that are necessary conditions for general solvophobic behavior. His find-
ings support the classical view that solvophobicity is observed when the solvent-
solvent interaction strength clearly exceeds the solvent-solute interaction. In the
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case of water, the large cohesive energy is mainly due to the strong hydrogen bond
network. The importance of the hydrophobic effect as a source of protein stability
was first identified by Kauzmann191 and a review on dominant forces in protein
folding is given by Dill.192 At a certain solute size (around 1 nm), it becomes en-
ergetically more favorable to assemble hydrophobic units than to keep them apart
by thermal agitation.193,194

The spreading and wetting of water on hydrophobic/hydrophilic surfaces is a
related subject of great practical interest where substantial insight has been gained
through the help of computation. The wetting behavior of a surface could be char-
acterized through the contact angle that a liquid forms on it. One can distinguish at
least two different states, namely, the wetting state, where a liquid spreads over the
substrate to form a uniform film, and the partial wetting state, where the contact
angle lies in between 0 and 90 deg. The microscopic contact angle θ for a droplet
with base radius r is given by the modified Young’s equation195

γSV = γSL + γLV cos θ + τ

r
, (8.27)

where the γ ’s denote the surface tensions between the solid (S), liquid (L), and
vapor (V) phases, respectively, and τ is the tension associated with the three-phase
contact line. In the limit of macroscopic droplets, the effect of the line tension τ be-
comes insignificant, i.e., for r→∞, Eq. (8.27) reduces to the well-known Young’s
equation.38 In the following, we review computational studies that aim at studying
the validity of macroscopic concepts such as Young’s or Laplace’s equations at
the nanoscale and at a molecular characterization (ordering, orientation, etc.) of a
liquid at a hydrophobic or hydrophilic interface.

The wetting and drying of a liquid and a vapor phase enclosed between parallel
walls was studied by Saville,196 Sikkenk et al.,197 and Nijmeijer et al.198,199 The
main difference in their simulations was the representation of the confining wall.
The introduction of an “inert” wall199 leads to good agreement between visually
observed contact angles and the ones deduced from the surface tensions through
Young’s equation.

Hautman and Klein200 have performed one of the first MD studies to investi-
gate a liquid droplet on different solid substrates. They observed the equilibrium
contact angle of water droplets containing merely 90 molecules on hydrophobic
and hydrophilic surfaces that were formed by monolayers of long-chain molecules
with terminal CH3 and OH groups, respectively.

Thompson et al.201 tested and confirmed the validity of Young’s and of
Laplace’s equation at microscopic scales for a fluid-fluid interface in a channel.
The wetting properties of the fluids were controlled by setting different interac-
tion strengths between the fluids and the wall; all interactions were modeled using
the Lennard–Jones potential. Fan and Cağin202 simulated the wetting of crystalline
polymer surfaces by water droplets containing 216 water molecules. Furthermore,
they introduced a different way to measure the contact angle between a liquid and a
solid surface using the volume and contact area of the droplet instead of the droplet
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center-of-mass height above the surface. The dynamics of spreading at the molecu-
lar level were first studied by de Ruijter and De Coninck203 and de Ruijter et al.204

They monitored the relaxation of the contact angle for a fluid modeled by linear
chain molecules and obtained good agreement with a molecular kinetic theory of
wetting. MD studies of heat transfer at solid liquid interfaces has been reported.51

Reviews of the dynamics of wetting are given in Refs. 205 and 206.
Bresme and Quirke207,208 investigated by means of MD simulations the wet-

ting and drying transitions of spherical particulates at a liquid-vapor interface as
a function of the fluid-particulate interaction strengths and of the particulate size.
They showed that the wetting transition for a small particulate occurs at a weaker
interaction strength than for a large one. This suggests that a change in geometry of
the particulate enhances its solubility. In a subsequent study, Bresme and Quirke209

analyzed the dependence of the spreading of a lens in a liquid-liquid interface in
terms of the liquid-lens surface tension. It was found that this dependence is well
described by Neumann’s construction, which is the analog to Young’s equation
when the three phases in contact are deformable. Werder et al.69 studied the be-
havior of water droplets confined in pristine carbon nanotubes using molecular dy-
namics simulations (cf. Fig. 8.3). They found contact angles of 110 deg indicating
a nonwetting behavior. Lundgren et al.210 studied the wetting of water and water-
ethanol droplets on graphite. For pure water droplets, they found contact angles
that were in good agreement with the experimentally observed ones. On addition
of ethanol, the contact angle decreased as expected and the ethanol molecules were
concentrated close to the hydrophobic surface and at the water-vapor interface.
Werder et al.38 used the known wetting behavior of water on graphite to calibrate
the water-graphite interaction in MD simulations (cf. Fig. 8.4). They found that
water monomer binding energies of −6.33 and −9.37 kJ mol−1 are required to
recover, in the macroscopic limit, contact angles of 86 deg (Ref. 211) and 42 deg
(Ref. 212), respectively. Figure 8.5 shows micro-sized water droplets on a graphite

Figure 8.3 Molecular dynamics simulation of the contact angle of water droplets in sin-
gle-walled carbon nanotubes.69 The molecular structure (left) and the time-averaged iso-
chor profiles (right) indicate a nonwetting behavior of the 5-nm-diameter water droplet.
(Reprinted with permission from Ref. 69, © 2001 American Chemical Society.)
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surface. These binding energies include a correction to account for the line tension
that, through MD simulations of droplets of different sizes, is estimated to be pos-
itive and of the order of 2× 10−10 J/m. For a simple Lennard–Jones interaction
potential acting between the oxygen atoms of the water and the carbon atom sites,
the corresponding interaction parameters to obtain the desired binding energies are
σCO = 3.19 Å, εCO = 0.392 kJ mol−1, and εCO = 0.5643 kJ mol−1, respectively.

8.4.2 Slip flow boundary conditions

The conditions at the fluid-solid interface are of paramount interest to develop suit-
able computational models and to understand the governing physical mechanisms

(a) (b)

Figure 8.4 Side view of a 5-nm large water droplet on graphite (a). From molecular dynam-
ics simulations by Werder et al.69 The contact angle is extracted from the time-averaged wa-
ter isochore profile (b). The isochore levels are 0.2, 0.4, 0.6, 0.8, and 1.0 g cm−3. (Reprinted
with permission from Ref. 69, © 2001 American Chemical Society.)

Figure 8.5 ESEM experiments of micron-sized water droplets condensed on a graphite
surface showing contact angles of approximately 30 deg. (From Noca and Sansom.213)
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to design effective nanodevices. In the nanoscale the fluid-solid interfaces assume
greater importance because the surface-to-volume ratio is larger than in macroscale
flows and the flow length scale approaches the fluid molecule size. When solids are
immersed in fluids, the boundary condition usually adopted in the modeling equa-
tions of the macroscale systems is a vanishing relative velocity between the fluid
and the solid surface—the no-slip condition.214,215 The validity of this condition is
an active area of computational and experimental research.

8.4.2.1 Experimental evidence of no slip

Experimental evidence of the no-slip condition at wetting surfaces was provided
by Whetham216 and Bulkley.217 On the other hand, slip is found to exist in narrow,
hydrophobic capillaries, as demonstrated by Helmholtz and von Piotrowski,218 and
later confirmed by Schnell,219 Churaev et al.,220 and Baudry et al.13 A thorough re-
view of earlier works concerning the manifestation of slip can be found in Ref. 11.
The existence of no-slip conditions for liquid flows in confined spaces is further-
more complicated by the unusual behavior of the fluid properties associated with
phase changes of the fluid. For water, strong density fluctuations are furthermore
observed within 1 nm of the solid surface,221 and the water orientation and hydro-
gen bonding are perturbed.222 Garnick223 found that the viscosity attains a signifi-
cantly higher value when the fluid is confined leading to a stick-slip behavior,224,225

or solidification when the film thickness becomes sufficiently small.226

One important yet unresolved question in NFM is the amount of slip occurring
at hydrophilic surfaces. Bonaccurso et al.14 observed a persistent slip in measure-
ments of water on mica and glass, whereas Vinogradova and Yakubov170 recently
found a no-slip condition in drainage experiments of thin films between silica sur-
faces.

The question remains if the transition from no-slip to slip follows the limit of
zero to nonzero contact angle of the fluid solid interface, or if (weakly) hydropho-
bic surfaces can support a no-slip. The experimental evidence is strongly affected
by uncertainties such as surface roughness, entrapped gas or vapor bubbles,173,227

chemical impurities,11 and the purity of the fluid.228 Alternatively, molecular dy-
namics simulations free of such impurities may provide valuable insight into the
nature of the no-slip condition. At the same time such conjectures rely on the exis-
tence of accurate interaction potentials that describe the fluid-solid interface.

To extend continuum fluid dynamics modeling to nanoscale flow systems, the
liquid-solid boundary conditions must be determined and parameterized,229 and
the length scale where molecular-size effects become important should be known.
Contrary to traditional continuum modeling, taking into account nanoscale flow
phenomena implies that the conditions will depend on the specific molecular nature
of the fluid and the surface.

The slip velocity �u at a surface may be modeled according to Maxwell,230 as

�u= b
∂u

∂y
, (8.28)
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where b is the slip length, α = 1/b is the slip coefficient, and ∂u/∂y denotes the
shear stress at the interface as shown in Fig. 8.6. The slip length is a function of the
properties of the fluid-solid interface. At hydrophobic surfaces, Churaev et al.220

and Baudry et al.13 found slip lengths of the order of 30 to 40 nm. The slip observed
by Bonaccurso et al.14 at hydrophilic surfaces amounts to 8 to 9 nm.

A closed formula for the slip length was derived for dilute systems by
Bocquet,231 and an approximate formula for dense Lennard–Jones fluids was given
by Barrat and Bocquet.232 However, Richardson233 showed that the dissipation of
energy caused by the surface roughness (ε), and irrespective of the boundary con-
dition imposed at the microscale (a no-slip or a zero shear boundary condition)
results in an effective no-slip condition b = O(ε). Recent measurements by Zhu
et al.150 confirmed that the effect of surface roughness dominates the local inter-
molecular interaction. The analysis of Richardson233 is based on the separation of
length scales; thus l � ε � L, where l denotes the size of the molecules, and L

is the bulk fluid length scales. This separation is not present in many nanoscale
flows, such as the flow of waters (l ≈ 0.4 nm) passing a single-walled carbon nan-
otubes (L ≈ 1 nm and ε ≈ 0 nm). As a consequence, the amount of slip found
in nanoscale flows is expected to depend not only of the wetting properties of the
fluid-solid interface, but also on the particular geometry.

8.4.2.2 MD simulations of slip

Molecular dynamics simulations provide a controlled environment for the study
of slip in nanoscale systems free from impurities and surface roughness, but lim-
ited to studies of small systems, currently of the order of tens of nanometers and
tens of nanoseconds. Also, most studies have been conducted for idealized systems
such as Lennard–Jones fluids in simple geometries, often confined between smooth
(Lennard–Jones type) solids. However, these studies have provided valuable in-
sight into the fundamental mechanisms of slip. The following sections contain a
short review of recent MD simulations of the internal flows such as the planar

Figure 8.6 Slip at a fluid-solid interface is characterized by a finite velocity (�U ) at the
interface. This slip velocity is related to the slip length (b) through the shear rate at the
interface: �U = b∂u/∂y.
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Poiseuille and Couette flows, and external flows, including flows past cylin-
ders.

Koplik et al.234 performed MD simulations of Poiseuille flow and moving con-
tact lines. The no-slip condition was found to be satisfied for Lennard–Jones flu-
ids confined between Lennard–Jones solids, and slip at the contact line. Bitsanis
et al.235 found velocity profiles with slip, but also a flatness of the velocity profile
close to the reservoir walls used in their study.

In MD simulations of Poiseuille and Couette flows, Barrat and Bocquet232

found the no-slip boundary condition to depend on the wetting properties of the
fluid-solid interface. Both the fluid and solids were modeled as Lennard–Jones
molecules using a modified Lennard–Jones potential

Vij (r)= 4ε

[(
σ

r

)12

− cij

(
σ

r

)6
]

, (8.29)

where the parameter cij was used to adjust the relative strength of the interactions.
Thus, the cohesion of the fluid was increased from the usual Lennard–Jones fluid
using a value of cFF = 1.2, and the fluid-solid interaction was varied between 0.5
and 1.0, corresponding to contact angles of 140 and 90 deg, respectively. The
Poiseuille flow was driven by imposing an external (gravity) force, and the slip
length was found to vary between 40σ and O(σ ) for for contact angles of 90 and
140 deg, respectively. The slip length was found to decrease as a function of the
pressure in the channel.

In a series of simulations of flows in narrow pores, Todd et al.236 and Travis
et al.237,238 found the velocity profile to deviate significantly from the quadratic
form predicted by the Navier–Stokes formalism. Both the solid and fluid atoms
were modeled using a purely repulsive Lennard–Jones type (Weeks–Chander–
Andersen) potential, or the full 12–6 Lennard–Jones potential. The density of the
solid surface was approximately 80% of the fluid density, resulting in a high surface
corrugation and a no-slip condition at the fluid-solid interface.

Mo and Rosenberger239 modeled the surface corrugation explicitly in 2D simu-
lations of a Lennard–Jones system. Both sinoidally and randomly roughened walls
were considered with various amplitudes. The no-slip condition was found to hold
when the molecular mean free path is comparable to the surface roughness. In
the planar Couette flow, the fluid is confined between two solid planar walls. The
flow is generated by moving one or both walls with constant (opposite) velocity
and the imposed shear diffuses into the flow developing a linear velocity profile.
Thompson and Robins240 studied a Lennard–Jones fluid in a planar Couette flow
and found slip, no-slip and locking depending on the amount of structure (corruga-
tion) induced by the solid walls. Highly corrugated walls would result in a no-slip
condition, whereas weak fluid-wall interaction would result in slip. At strong inter-
actions, a epitaxial ordering was induced in the first fluid layers, effectively lock-
ing these to the wall. Thus the slip would occur within the fluid. For Couette flows
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driven by a constant force, this locking results in a stick-slip motion involving a
periodic shear-melting transition and recrystallization of the film.241,242

The importance of the surface corrugation was later emphasized by Thompson
and Troian,243 who found that the slip length diverges at a critical shear rate (γ̇c)
as

b= b0

√
1− γ̇ /γ̇c

, (8.30)

where b0 is the slip length in the limit of low-shear rate. The critical shear rate
is reached while the fluid is still Newtonian, and depends on the corrugation of
the surface energy. The importance of the corrugation of the surface was later
confirmed by Cieplak et al.244 for simple and chain-molecule fluids, and by Jab-
barzadeh et al.245 for alkenes confined between rough atomic sinusoidal walls.
They found that the amount of slip is governed by the relative size of the molecular
length to the wall roughness.

Sokhan et al.246 considered methane modeled as spherical Lennard–Jones
molecules confined between (high-density) graphite surfaces. They found a sig-
nificant slip even in the strongly wetting case, and recovered the no-slip condition
by artificially reducing the density of the wall. The constant gravity force imposed
to drive the flow resulted in low-frequency oscillations of the mean flow with a
time scale ranging from 10 ps to 2 ns. Both flexible or rigid walls were considered
but the dynamics of the wall was found to have little influence of the slip length.

For water confined between hydrophobic graphite surfaces, Walther et al.247

found slip lengths in the range of 31 to 63 nm for pressures between 1 and 1000 bar.
Changing the wetting properties of the interface to hydrophilic reduced the slip
length to 14 nm. Other confined flows include the Hagen–Poiseuille (pipe) flow as
considered in Heinbuch and Fischer,248 who found that two layers of molecules
would stick to the wall for sufficiently strong fluid-wall interaction. Similar studies
involve the flows of monoatomic fluids,249 and methane250 through single-walled
carbon nanotubes. Similar to their study of methane flowing in a slit carbon nan-
otube pore, Sokhan et al.250 found a large slip in the range of 5.4 to 7.8 nm, which
is significantly less than the values found for the planar graphite surface, due to the
high curvature and increased friction in the carbon nanotube.

Hirshfeld and Rapaport251 conducted MD simulations of the Taylor–Couette
flow. Using a purely repulsive Lennard–Jones potential and hard walls, they found
good agreement with experiments and theory. In a recent study, Walther et al.247

performed nonequilibrium molecular dynamics simulations of water flowing past
an array of single-walled carbon nanotubes. For diameters of the carbon nanotube
of 1.25 and 2.50 nm and onset flow speeds in the range of 50 to 200 m s−1, they
found the no-slip condition to hold as demonstrated in Fig. 8.7. Application of the
same model to the Couette flow resulted in significant slip, indicating an influence
of the geometry on the slip.
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(a) (b)

Figure 8.7 NEMD simulation for the study of hydrodynamic properties of carbon
nanotubes.252 The simulations involve water flowing past an array of 1.25- and 2.50-nm-dia-
meter carbon nanotubes. A closeup of the systems is shown in (a), and the time-averaged
tangential component of the velocity is shown in (b). The profiles are obtained for a 1.25-nm
tube: —; measured; – –; fit, and 2.50-nm tube: - -; measured; · · ·; fit, and compared with the
Stokes–Oseen solution. The slip length extracted from these simulations indicates that the
continuum no-slip condition is valid.

8.5 Fluids in confined geometries

An understanding of the interaction of water-based liquids with carbon in confined
nanoscale geometries at the nanoscale is very important for exploring the poten-
tial of devices such as carbon nanotubes (CNTs) in nanofluidic chips, probes, and
capsules for drug delivery. The hollow interior of carbon nanotubes can serve as a
nanometer-sized capillary. The nanotube cavities are weakly reacting with a large
number of substances and, hence, may serve as nanosize test tubes. The small di-
ameter of CNTs points to using their filled cavities as a mold or a template in
material fabrication. Ugarte et al.253 filled open carbon nanotubes with molten sil-
ver nitrate by capillary forces producing chains of silver nanobeads separated by
high-pressure gas pockets.

Finally, the ability to encapsulate a material in a nanotube also offers new pos-
sibilities for investigating dimensionally confined phase transitions. In particular,
water molecules in confinement exhibit several phase transitions as their network
of hydrogen bonds is disrupted.

The prospect of controlled transport of picoliter volumes of fluid and sin-
gle molecules requires addressing phenomena such as a local density increase
of several orders of magnitude and layering of transported elements in confined
nanoscale geometries.254 This presents a unique set of concerns for transport and
lubrication of films in the nanometer scale.

8.5.1 Flow motion in nanoscale channels

Nanoscale channels such as ion channels are one of the most important natural
devices for the transport of molecules into and out of biological cells. The behavior
of confined fluids in nanoscale geometries is an area that has been under study for
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some time in zeolites and ideal nanoporous systems. The understanding of such
processes is of great interest for nanotechnology applications in biotechnology.

Experiments have demonstrated that fluid properties become drastically altered
when the separation between solid surfaces approaches the atomic scale.224,255 In
the case of water, so-called drying transitions occur on this scale as a result of
strong hydrogen bonding between water molecules, which can cause the liquid to
recede from nonpolar surfaces and form distinct layers separating the bulk phase
from the surface. In addition, changes such as increased effective shear viscosity
as compared to the bulk, prolonged relaxation times and nonlinear responses set
in at lower shear rates.223 Computational studies of the behavior of molecules in
nanoporous structures have played an important role in understanding the behav-
ior of fluids in the nanometer scale, complementing experimental works. A detailed
study regarding the behavior of a fluid in close confinment was reported by Thomp-
son and Robbins,240 who used molecular-dynamics simulations of Lennard–Jones
liquids sheared between two solid walls. A broad spectrum of boundary conditions
was observed including slip, no-slip, and locking. It was shown that the degree of
slip is directly related to the amount of structure induced in the fluid by wall-fluid
interaction potential. For weak wall-fluid interactions, there is little ordering and
slip was observed. At large interactions, substantial epitaxial ordering was induced
and the first one or two fluid layers became locked to the wall. The liquid density
oscillations also induced oscillations in other microscopic quantities normal to the
wall, such as the fluid velocity in the flow direction and the in-plane microscopic
stress tensor, that are contrary to the predictions of the continuum Navier–Stokes
equations. However, averaging the quantities over length scales that are larger than
the molecular lengths produced smooth quantities that satisfied the Navier–Stokes
equations.

Molecular dynamics and Monte Carlo simulations have been used to simu-
late systems that include films of spherical molecules, straight chain alkanes, and
branched alkanes.235,256–258 Bitsanis and his coworkers235 have reported on the
flow of fluids confined in molecularly narrow pores. They observed departure
from the continuum as strong density variations across the pore rendered the usual
dependence of the local viscosity on local density inappropriate. At separations
greater than four molecular diameters flow can be described by a simple redefini-
tion of local viscosity. In narrower pores, a dramatic increase of effective viscosi-
ties is observed and is due to the inability of fluid layers to undergo the gliding
motion of planar flow. This effect is partially responsible for the strong viscos-
ity increases observed experimentally in thin films that still maintain their fluidity.
The simulations for Couette and Poiseulle types of flow yielded wall parallel ve-
locity profiles that deviate from the shape predicted by continuous assumptions.
Confinement also affects the electronic properties of the enclosed substances. In-
termolecular dipole-dipole interactions were once thought to average to zero in
gases and liquids as a result of rapid molecular motion that leads to sharp nuclear
magnetic resonance lines. In Ref. 259, it is shown that a much larger, qualitatively
different intermolecular dipolar interaction remains in nanogases and nanoliquids.
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The dipolar coupling that characterizes such interactions is identical for all spin
pairs and depends on the shape, orientation (with respect to the external magnetic
field), and volume of the gas/liquid container. This nanoscale effect is useful in the
determination of nanostructures.

Flows of argon, helium, and a buckyball and helium fluid inside carbon nan-
otubes have been reported using molecular dynamics simulations.249,260 The fluid
was started at some initial velocity; fluid particles were allowed to recycle axially
through the tube via minimum image boundary conditions. Argon slowed down
more quickly than helium. In addition, the behavior of the fluid strongly depended
on the rigidity of the tube; a dynamic tube slowed down the fluid far more quickly
than one in which the tube was held frozen. Another study261 reports a molecular
dynamics simulation to investigate the properties and design space of molecular
gears fashioned from carbon nanotubes with teeth added via a benzyne reaction.
A number of gear and gear-shaft configurations are simulated on parallel comput-
ers. One gear is powered by forcing the atoms near the end of the nanotube to
rotate, and a second gear is allowed to rotate by keeping the atoms near the end
of its nanotube constrained to a cylinder. The meshing aromatic gear teeth transfer
angular momentum from the powered gear to the driven gear. Results suggest that
these gears can operate at up to 50 to 100 GHz in a vacuum at room temperature.
The failure mode involves tooth slip, not bond breaking, so failed gears can be
returned to operation by lowering the temperature and/or rotation rate.

Manipulation of the geometry at the nanoscale may be readily utilized for con-
trolled fluid transport. This was demonstrated262 by fluidic control in lipid nan-
otubes 50 to 150 nm in radius, conjugated with surface-immobilized unilamellar
lipid bilayer vesicles. Transport in nanotubes was induced by continuously increas-
ing the surface tension of one of the conjugated vesicles, for example, by ellipsoidal
shape deformation using a pair of carbon microfibers controlled by micromanip-
ulators as tweezers. The shape deformation resulted in a flow of membrane lipids
toward the vesicle with the higher membrane tension; this lipid flow in turn moved
the liquid column inside the nanotube through viscous coupling. By control of the
membrane tension difference between interconnected vesicle containers, fast and
reversible membrane flow (moving walls) with coupled liquid flow in the connect-
ing lipid nanotubes was achieved.

8.5.1.1 Biological nanochannels

Ion channels consist of a particular natural form of nanochannels with particular
importance to biological systems. They belong to a class of proteins that forms
nanoscopic aqueous tunnels acting as a route of communication between intra and
extracellular compartments. Each ion channel consists of a chain of aminoacids
carrying a strong and rapidly varying electric charge. Ion channels regulate cell
internal ion composition, control electrical signaling in the nervous system and
in muscle contraction, and are important for the delivery of many clinical drugs.
Channels are usually “gated,” i.e., they contain a region that can interrupt the flow
of molecules (water, ions) that is often coupled to a sensor that controls the gate
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allosterically.263 They exhibit selectivity on the types of ions that get transmitted
and may exhibit switching properties similar to other electronic devices. At the
same time, channels or pores for uncharged molecules mediate transport through
the membrane by diffusion driven by the gradient of this substance. Pores or chan-
nels are known to exist for water and small molecules like urea, glycerol, and
others. One particular nongated channel of interest is a water channel called an
aquaporin. In aquaporins, the general belief was that water diffuses through the
lipids of biological membranes. On the other hand, it has been known for many
years that a large portion of water transport is protein-mediated. The question of
how gating works at an atomic level is one of considerable complexity. A pattern
is emerging for some channels in which the most constricted region of the pore
(which is usually identified with the gate) is ringed by hydrophobic amino acid
side chains, e.g., leucine or valine. So, is an effect other than steric occlusion able
to close a channel, i.e., hydrophobic gating? Experimental evidence in favor of
such a mechanism comes from studies of pores in modified Vycor glass, which
showed that water failed to penetrate these pores once a threshold hydrophobicity
of the pore walls was exceeded.263

Molecular dynamics simulations through atomistic models of nanopores em-
bedded within a membrane mimetic have been used to identify whether a hy-
drophobic pore can act as a gate of the passage of water. Both the geometry of a
nanopore and the hydrophilicity vs. hydrophobicity of its lining determine whether
water enters the channel. For purely hydrophobic pores, there is an abrupt transi-
tion from a closed state (no water in the pore cavity) to an open state (cavity water
at approximately bulk density) once a critical pore radius is exceeded. This critical
radius depends on the length of the pore and the radius of the mouth region. Fur-
thermore, a closed hydrophobic nanopore can be opened by adding dipoles to its
lining.

The prospect of employing structures such as pure and doped carbon nanotubes
for molecular transport has not been unnoticed. As a step in understanding the
governing physical phenomena, in long (>50 ns) simulations of a carbon nanotube
submerged in water, Hummer et al.68 (Fig. 8.8) observed water flux through a pore
occuring in a pulsatory fashion, with fluctuations in flux on a time scale of 4 ns.

Waghe et al.264 have studied the kinetics of water filling and emptying the in-
terior channel of carbon nanotubes using molecular dynamics simulations. Filling
and emptying occur predominantly by sequential addition and/or removal of water
to or from a single-file chain inside the nanotube. Advancing and receding water
chains are orientationally ordered. This precludes simultaneous filling from both
tube ends, and forces chain rupturing to occur at the tube end where a water mole-
cule donates a hydrogen bond to the bulk fluid. They used transition path concepts
and a Bayesian approach to identify a transition state ensemble that was character-
ized by its commitment probability distribution. At the transition state, the tube is
filled with all but one water molecule. One important observation is that filling ther-
modynamics and kinetics depend on the strength of the attractive nanotube-water
interactions that increases with the length of the tubes.
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Figure 8.8 Pseudo-1D ordering of water molecules in a 8.5-Å-diameter carbon nanotube.
(From unpublished simulations performed in our group based on work by Hummer et al.68)

Computational requirements for the simulation of transport across nanoscale
channels has been identified as a challenging multiscale problem due to the dis-
parate scales that are present. In their review article, Aluru et al.265 proposed the
use of continuum simulation techniques for handling the complex geometries to
resolve the drift-diffusion equation for charge flow. At the same time, ion trav-
esal can be a rather rare event. Continuum models can then be parametrized to
match current-voltage characteristics by specifying a suitable space and/or energy-
dependent diffusion coefficient, which accounts for the ions’ interactions with the
local environment.

Particle methods can be implemented for the solution of such flows. A Brown-
ian dynamics approach can be used for the description of the ion flow, in which
ion trajectories evolve according to the Langevin equation. An N -body solver can
be used to account for all of the pairwise ion interactions, while external forces
induced by the potential can be computed from solving the potential equation for
the externally computed potential fields. A frictional term is included to account
for ion-water scattering, while a short-range repulsion term is used to account for
ionic core repulsion. MD and Monte Carlo methods can be used to model water-ion
interactions, while Monte Carlo methods offer an interesting alternative as water
and protein are treated as background dielectric media and only the individual ion
trajectories are resolved.266

Beckstein et al.263 present simulations of a model comprised of a membrane-
spanning channel of finite length allowing water molecules within the pore to equi-
librate with those in the bulk phase, thus avoiding any prior assumptions about wa-
ter density. Effectively, the interior of the pore is simulated in a grand canonical
ensemble and entry or exit of water to or from an atomistic model of a nanopore
is probed, while retaining control over its geometry and the charge pattern of its
pore lining. In summary, hydrophobicity per se can close a sterically open channel
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to penetration by water and hence, by simple extension, to ions and small polar
solutes. Such a channel can be opened by adding a relatively small number of
dipoles to the lining of the pore or by a modest increase in radius. The critical
gating radius depends on the geometry of the mouth region of the pore. Simulation
studies of gramicidin suggested that 87% of overall channel resistance to water per-
meation comes from the energetic cost for a bulk water to enter the mouth. Thus,
both overall dimensions and the extents of hydrophobic and hydrophilic regions in
the lining provide a key to gating of nanopores.

8.5.2 Phase transitions of water in confined geometries

Encapsulation of a second phase inside carbon nanotubes offers a new avenue to
investigate dimensionally confined phase transitions. When pure liquid water is en-
capsulated inside narrow carbon nanotubes, water molecules would be expected to
line up into some quasi-1D structures, and on freezing, may exhibit quite different
crystalline structures from bulk ice. Confinement may change not only resulting
crystalline structures but also the way liquids freeze.267

Supercooled water and amorphous ice have a rich metastable phase behavior.
In addition to transitions between high- and low-density amorphous solids and
between high- and low-density liquids, a fragile-to-strong liquid transition has re-
cently been proposed and supported by evidence from the behavior of deeply su-
percooled bilayer water confined in hydrophilic slit pores.268 Evidence from mole-
cular dynamics simulations suggests another type of first-order phase transition—
a liquid-to-bilayer amorphous transition—above the freezing temperature of bulk
water at atmospheric pressure as reported in Koga et al.269 This transition occurs
only when water is confined in a hydrophobic slit pore270 with a width of less than
1 nm. On cooling, the confined water, which has an imperfect random hydrogen-
bonded network, transforms into a bilayer amorphous phase with a perfect network
(owing to the formation of various hydrogen-bonded polygons) but no long-range
order.

Molecular dynamics simulations were performed in Noon et al.271 at physio-
logical conditions (300 K and 1 atm) using nanotube segments of various diameters
submerged in water. The results show that water molecules can exist inside the nan-
otube segments and that the water molecules inside the tubes tend to organize them-
selves into a highly hydrogen-bonded network, i.e., solid-like wrapped-around ice
sheets. The disorder-to-order transition of these ice sheets can be achieved purely
by tuning the size of the tubes.

Particularly intriguing is the conjecture272–274 that matter within the narrow
confines of a carbon nanotube might exhibit a solid-liquid critical point beyond
which the distinction between solid and liquid phases disappears. This unusual
feature, which cannot occur in bulk material, would allow for the direct and con-
tinuous transformation of liquid matter into a solid. In Koga et al.272 simulations
of the behavior of water encapsulated in carbon nanotubes suggest the existence
of a variety of new ice phases not seen in bulk ice, and of a solid-liquid crit-
ical point. Using carbon nanotubes with diameters ranging from 1.1 to 1.4 nm
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and applied axial pressures of 50 to 500 MPa, they found that water can exhibit
a first-order freezing transition to hexagonal and heptagonal ice nanotubes, and a
continuous phase transformation into solid-like square or pentagonal ice nanotubes
(Fig. 8.9).

Slovak et al.275 performed a series of MD simulations to examine in more detail
the results of a water simulation, which shows that a thin film of water, when
confined in a hydrophobic nanopore, freezes into a bilayer ice crystal composed of
two layers of hexagonal rings. They found that only in one case the confined water
completely freezes into perfect bilayer ice, whereas in two other cases, an imperfect
crystalline structure consisting of hexagons of slightly different shapes is observed.

Figure 8.9 Snapshots of quenched molecular coordinates: (a) square; (b) pentagonal; and
(c) hexagonal ice nanotubes in (14,14), (15,15), and (16,16) SWCNs; and (d) to (f), the
corresponding liquid phases. The ice nanotubes were formed on cooling under an axial
pressure of 50 MPa in molecular dynamics simulations. The nearest-neighbor distances in
both ice nanotube and encapsulated liquid water are fairly constant, about 2.7 to 2.8 Å, and
this is in part responsible for the novel phase behavior. (Reprinted with permission from
Ref. 272, © 2001 The Nature Publishing Group.)
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This imperfection apparently hinders the growth of a perfect bilayer crystal. After
adjusting the area density to match spatial arrangements of molecules, the latter
two systems are able to crystallize completely. As a result, we obtain three forms
of bilayer crystals differing in the area density and hexagonal rings alignment.

The same group in a later study267 considered simulations of phase behavior
of quasi-1D water confined inside a carbon nanotube, in the thermodynamic space
of temperature, pressure, and diameter of the cylindrical container. Four kinds of
solid-like ordered structures—ice nanotubes—form spontaneously from liquid-like
disordered phases at low temperatures. In the model system, the phase change oc-
curs either discontinuously or continuously, depending on the path in the thermo-
dynamic space.

Confinement of liquids such as water in nanoscales can also induce properties
that correspond to water properties in supercritical conditions. While at room tem-
perature, water is forming tetrahedral units of five molecules linked by hydrogen
bonds. When temperature is raised and/or density is reduced, some of the hydrogen
bonds are broken. Most of the dominant order is then lost and the remaining struc-
tures are linear and bifurcated chains of H-bonded water molecules, which can be
regarded as parts of broken tetrahedrals. The destruction of the hydrogen bonds af-
fects the water so that its compressibility and transport properties are intermediate
between those of liquid and gas. However, increasing temperature and/or decreas-
ing density are not the only means to achieve this effect. Recent MD simulations
indicate that when water is introduced inside carbon nanotubes, its hydrogen bond-
ing structure is also compromised84,276 with an important decrease in the average
number of hydrogen bonds with respect to bulk supercritical water. This reduc-
tion is greater than for water in standard conditions. The atomic density profiles
are slightly smoother, but with the same general features than for water at lower
temperatures.

8.6 Nanofluidic devices

The previous sections have discussed some of the fundamental issues of nanoscale
fluid mechanics. Understanding the governing principles of these flows through
novel computational and experimental techniques will lead to the development of
devices that are able to exploit the unique characteristics of these flows. In paral-
lel, engineers are developing nanofluidic devices by ingeniously adopting concepts
from areas such as biology and chemistry. Several key issues remain unresolved
such as the manufacturing of nanoscale devices either by self-assembly or by con-
trolled interaction with microscale devices. The stage is set for new and inventive
engineering concepts to continue to feed fundamental research in NFM, while the
envelope of what can be accomplished by exploiting nanoscale fluid mechanics
is pushed. In the following sections, we review a partial list of nanofluidic con-
cepts and devices as they are linked to the flow physics addressed in the previous
sections.

Downloaded from SPIE Digital Library on 18 Jun 2012 to 58.97.130.72. Terms of Use:  http://spiedl.org/terms



Nanoscale Fluid Mechanics 363

8.6.1 Solubilization

Most applications employing the unique electronic, thermal, optical, and mechan-
ical properties of individual single-wall carbon nanotubes will require the large-
scale manipulation of stable suspensions at a high weight fraction. Tube solubi-
lization provides access to solution-phase separation methodologies277 and facil-
itates chemical derivatization, controlled dispersion and deposition,278 microflu-
idics, fabrication of nanotube-based fibers and composites,279 and optical diagnos-
tics. Unfortunately, nanotubes aggregate easily and are difficult to suspend as a
result of substantial van der Waals attractions between tubes.280

Thus far, some progress has been made toward the solubilization of single-
walled carbon nanotubes (SWNTs) in both organic and aqueous media. Dissolution
in organic solvents has been reported with bare SWNT fragments (100 to 300 nm
in length) and with chemically modified SWNTs.281 Dissolution in water, which
is important because of potential biomedical applications and biophysical process-
ing schemes, has been facilitated by surfactants and polymers,282,283 by polymer
wrapping,284 and by attaching glucosamine, which has both an amine group that
can easily form an amide bond with the SWNT and high water solubility.285 In the
method reported by O’Connell et al.286 the formation of any chemical bond was
avoided by wrapping the SWNT in macromolecules such as poly(vinylpyrrolidone)
PVP and polystyrene sulfonate PSS. Sano et al.287 functionalized the SWNTs with
monoamine-terminated poly(ethylene oxide) PEO using a preparation method via
acyl chloride. High-weight-fraction suspensions of surfactant-stabilized SWNTs in
water are reported in Islam et al.,288 with a large fraction of single tubes. A single-
step solubilization scheme was developed by the nonspecific physical adsorption
of sodium dodecylbenzene sulfonate. The diameter distribution of nanotubes in the
dispersion, measured by atomic force microscopy, showed that even at 20 mg/mL,
about 65% of single-wall carbon nanotube bundles exfoliated into single tubes. In
Riggs et al.,283 solubilization of the shortened carbon nanotubes was achieved by
attaching the nanotubes to highly soluble polyethylenimine or by functionalizing
the nanotubes with octadecylamine. The soluble carbon nanotube samples formed
homogeneous solutions in room-temperature chloroform. Optical limiting proper-
ties of these solutions were also determined for 532-nm pulsed-laser irradiation,
and the results indicate that the carbon nanotubes exhibit significantly weaker op-
tical limiting responses in homogeneous solutions than in suspensions.

8.6.2 Nanofluids

Common fluids with particles of the order of nanometers in size are termed
nanofluids. These nanofluids have created considerable recent interest for their im-
proved heat transfer capabilities. With a very small volume fraction of such parti-
cles, the thermal conductivity and convective heat transfer capability of these sus-
pensions are significantly enhanced without the problems encountered in common
slurries such as clogging, erosion, sedimentation, and increase in pressure drop.
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Heating or cooling fluids is important for many industrial sectors, including en-
ergy supply and production, transportation, and electronics. The thermal conduc-
tivity of these fluids plays a vital role in the development of energy-efficient heat
transfer equipment. However, conventional heat transfer fluids have poor thermal
transfer properties compared to most solids. To improve the thermal conductivity of
these fluids numerous theoretical and experimental studies of the effective thermal
conductivity of liquids containing suspended milli- or microsized solid particles
have been conducted. A number of procedures have been proposed for the devel-
opment of nanofluids. In Xuan and Li,289 a procedure is presented for preparing a
nanofluid by a suspension of copper nanophase powder and a base liquid. Wilson
et al.290 used colloidal metal particles as probes of nanoscale thermal transport in
fluids. They investigated suspensions of 3- to 10-nm-diameter Au, Pt, and AuPd
nanoparticles as probes of thermal transport in fluids and determined approximate
values for the thermal conductance G of the particle/fluid interfaces. The measured
G are within a factor of 2 of theoretical estimates based on the diffuse-mismatch
model. Thermal transport in nanofluids has also been considered through experi-
mental study of pool boiling in water-Al2O3 nanofluids.291 The results indicate that
the nanoparticles have pronounced and significant influence on the boiling process
deteriorating the boiling characteristics of the fluid. This effect is attributed to the
change of surface characteristics during boiling by particles trapped on the surface.

Nanofluids consisting of CuO or Al2O3 nanoparticles in water or ethylene gly-
col exhibit enhanced thermal conductivity. A maximum increase in thermal con-
ductivity of approximately 20% was observed in Lee et al.292 for 4 vol% CuO
nanoparticles with an average diameter of 35 nm dispersed in ethylene glycol.
A similar behavior has been observed in a Al2O3/ethylene glycol nanofluid.293

Furthermore, the effective thermal conductivity has shown to be increased by up
to 40%̇ for the nanofluid consisting of ethylene glycol containing approximately
0.3 vol% Cu nanoparticles of mean diameter <10 nm, and the effective thermal
conductivity of a nanofluid consisting of carbon nanotubes (1 vol%) in oil exhibits
160% enhancement.294

8.6.3 CNT as sensors and AFM tips

The low bending force constants of carbon nanotubes make them ideal candidates
for gentle imaging of soft samples. Moreover, due to their small (5- to 20-nm)
diameter and cylindrical shape, they provide excellent lateral resolution and are
ideal for scanning high-aspect-ratio objects.

Dai et al.295 first suggested mounting a CNT on silicon as a probe for tapping-
mode AFM to image the structure of nanoscale liquid samples. They attached in-
dividual nanotubes several microns in length to the Si cantilevers of conventional
atomic force microscopes. Because of their flexibility, the tips are resistant to dam-
age from tip crashes, while their slenderness enables imaging of sharp recesses in
surface topology. The authors were also able to exploit the electric conductivity
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of nanotubes by using them for scanning tunneling microscopy. These develop-
ments open up the possibility of investigating water layers under a variety of ex-
perimental conditions and as a function of precise lateral position on any surface
including biological membranes and macromolecules. Among the many and varied
roles of water layers are effects on biomolecular adhesion, colloid dispersion, and
tribology, which can now be investigated with nanometer lateral resolution and
with a wider range of materials than that previously provided by a surface force
apparatus.

Building on this work, Moloni et al.296 proposed an improved technique for
obtaining tapping mode scanning force microscopy (TMSFM) images of soft sam-
ples submerged in water. This technique makes use of a carbon nanotube several
microns in length mounted on a conventional silicon cantilever as the TMSFM
probe. The sample is covered by a shallow water layer and only a portion of the
nanotube is submerged during imaging. This mode of operation largely eliminates
the undesirable effects of hydrodynamic damping and acoustic excitation that are
present during conventional tapping mode operation in liquids and leads to high-
quality TMSFM images. A limitation of probes based on open-ended MWNT
is due to their limited lateral resolution as the tips of these probes have a flat
cylindrical endform of 5 nm or more in diameter. Implementation of a SWNT
with tips of about 1 nm may be the next step in perfecting scanning force mi-
croscopy.

The combination of a carbon nanotube probe and a highly sensitive dynamic
measurement scheme enabled the use of an AFM to measure oscillatory forces in
water approaching a surface that has been laterally characterized on a nanometer
scale. One important aspect of these results, in particular for colloidal systems, is
that forces appear to scale with the surface dimensions from the mesoscopic, as
measured by the surface forces apparatus, to the nanoscale.186 Also of importance
is the observation of solvation shells on a nonrigid surface. Application of these
techniques may help elucidate phenomena associated with the detailed mechanism
of hydrophobic drying of surfaces in aqueous environments (Fig. 8.10).

8.6.4 Carbon nanotubes as storage devices—adsorption

Carbon nanotubes have been envisioned as suitable storage devices for hydro-
gen and hydrogen-based fuels. Hydrogen-based fuels are considered a promising
prospect for the ever-growing demand for energy. Hydrogen’s byproduct is water,
and it can be easily regenerated, thus meeting the rising concern of environmental
pollution and the call for new and clean fuels. Unfortunately, owing to the lack of a
suitable storage system satisfying a combination of both volume and weight limita-
tions, the use of hydrogen energy technology has been restricted from automobile
application. Therefore, to implement hydrogen energy for electrical vehicles, the
first step is to look for an economical and safe hydrogen-storage medium. Re-
cent reports on very high and reversible adsorption of hydrogen in nanostructured
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(a) (b)

Figure 8.10 Drying of carbon nanotubes immersed in water. The range of the drying behav-
ior is strongly dependent on the wetting properties of the interface. A hydrophobic, but par-
tially wetting surface (a) displays a persistent wetting behavior for tube spacing exceeding
two layers of water molecules, whereas a purely repulsive interface (b) shows an extended
drying behavior. (From molecular dynamics simulations by Walther et al.297)

carbon materials such as carbon nanotubes,298 graphite nanofibers,299 and alkali-
doped nanotubes,300 have stimulated many experimental works301 and computa-
tional studies.302–304 Experimental results demonstrate that nanostructured carbon
materials have relatively high gravimetric hydrogen storage capacity. This capac-
ity is dependent on the purity of the carbon nanotubes with increased capacity
observed of the purified carbon nanotubes compared with that of the as-prepared
counterparts.305 This improvement is attributed to the removal of the impurities,
oxygen-containing functionalities, and adsorbed species in the MWNTs.

To investigate the capabilities and the specific mechanisms of gas adsorption by
CNTs, a number of computational studies have been performed. Such simulations
have examined gas molecules (NO2, O2, NH3, N2, CO2, CH4, H2O, H2, Ar) on
SWNTs and bundles using molecular dynamics303 and first principles methods.306

The adsorption and desorption energy of hydrogen atoms depend on the hydro-
gen coverage and the diameter of the SWNTs. The adsorption energy decreases
with the increasing diameter of the armchair tubes. Most molecules adsorb weakly
on SWNTs and can be either charge donors or acceptors to the nanotubes. Zhao
et al.303 found that the gas adsorption on the bundle interstitial and groove sites is
stronger than that on individual nanotubes. The electronic properties of SWNTs are
sensitive to the adsorption of certain gases such as NO2 and O2. Charge transfer and
gas-induced charge fluctuation might significantly affect the transport properties307

of SWNTs.

8.6.5 Nanofluidics for microscale technologies

Almost a decade after the first miniaturized gas chromatography system was suc-
cessfully fabricated on a silicon wafer,308 the first liquid-phase separation was
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demonstrated, thereby catalyzing the development of micrototal analysis systems.
Since that time there has been an enormous amount of research devoted to devel-
oping miniaturized systems for separations, chemical and biological sensing.309

Simultaneously, a number of technological factors have driven the development of
fluidic architectures toward the nanometer length scale. However, nanostructures
proposed to date for chemical and biological applications rely on self-assembling
and self-organizational processes.310 A technical challenge is to construct such
units into integrated 3D systems. The ultimate nanofluidic device is one that can
handle single molecules and colloid particles. Such devices require unprecedented
control over transport and mixing behaviors, and to advance current fluidics into
the single-molecule regime, we must develop systems having physical dimensions
in the nanometer scale. To create such devices, we can draw much knowledge from
biological systems. For example, the Golgi-endoplasmic reticulum network in eu-
karyotic cells has many attractive features for sorting and routing of single mole-
cules, such as transport control and the capability to recognize different molecular
species, and for performing chemical transformations in nanometer-sized compart-
ments with minimal dilution. It is, however, extremely difficult to mimic these bi-
ological systems by using traditional microfabrication technologies and materials
because of their small scale, complex geometries, and advanced topologies. Ad-
vanced nanofabrication techniques are necessary to construct such devices, and a
number of devices, such as nanochannels and nanomembranes are currently being
implemented.

The key characteristic feature of nanofluidic channels is that fluid flow occurs
in structures of the same size as the physical parameters that govern the flow.
Another factor that favors the development of nanoscale interconnects is the en-
hanced surface area-to-volume ratio characteristic of the nanochannels in these
membranes. The ability to interface nanochannels with conventional microfluidics
alleviates the need for nanofabrication techniques, and yet still enables a number
of important applications that use the unique characteristics of the nanopores. For
instance, the small pore size system can be used to concentrate dilute analytes,
or clean up analyte solutions. This latter point is especially important for biologi-
cal separations where often the major components (whether salts or proteins) in a
mixture obscure the ability to separate and collect the desired trace level compo-
nents. While a simple transfer of a band is demonstrated here from one microflu-
idic channel to the other, this concept can be extended to chemical manipulation
in the receiving channel with derivatizing reagents. Besides the chemical manip-
ulations possible between isolated microchannels, the high surface-to-volume ra-
tio of the nanochannels offers additional opportunities. For example, by including
molecular recognition elements on the interior of the nanopores, it should be pos-
sible to effect intelligent fluidic switching in which certain elements of the fluidic
stream being transported through the nanopores are retained, reacted, degraded or
otherwise chemically processed before being released into the next microfluidic
channel.

Downloaded from SPIE Digital Library on 18 Jun 2012 to 58.97.130.72. Terms of Use:  http://spiedl.org/terms



368 Petros Koumoutsakos et al.

8.6.5.1 Nanofluidic networks, sieves, and arrays

Networks of nanofluidic tubes have been manufactured by using a heat-depoly-
merizable polycarbonate (HDP) as a sacrificial layer.311 A patterned HDP film is
used as a temporary support for another film that is stable at the depolymerization
temperature. Heating the structure removes the HDP, leaving a network of nanoflu-
idic tubes without the use of solvents or other chemicals as required in most other
sacrificial layer processes. Tube dimensions of 140-nm height, 1-µm width, and
1-mm length are reported, and fabrication of other structures is discussed. Nanoim-
print lithography has been used312 to manufacture channels with a cross section as
small as 10 by 50 nm, which can be of great importance for confining biological
molecules into ultrasmall spaces. To avoid entropic traps in introducing biological
molecules such as DNA in fluidic channels directly from the macroscale, diffrac-
tion gradient lithography techniques have been used to fabricate continuous spatial
gradient structures that smoothly narrow the cross section of a volume from the
micron to the nanometer length scale.313

Nanofluidic devices are gaining popularity as DNA separation devices thus
replace the standard electrophoresis techniques. When passing through such
nanoscale sieves, ordinarily a long chain DNA molecule in liquid will clump into
a roughly spherical shape, and to move through a sieve it must uncoil and slide
in lengthwise. This movement involves an entropic force that causes DNA mole-
cules only partially within a sieve to withdraw when the force pulling them in is
removed. The effect results from the motion of segments in the chain molecule
as they interact with the beginning of the barrier. The force is called “entropic”
because the molecule moves out of the restricted space of the sieve into an open
area where it can be more disordered. A nanofluidic channel device,309 consisting
of many entropic traps, was designed and fabricated for the separation of long
DNA molecules. The channel comprises narrow constrictions and wider regions
that cause size-dependent trapping of DNA at the onset of a constriction. This
process creates electrophoretic mobility differences, thus enabling efficient sepa-
ration without the use of a gel matrix or pulsed electric fields. Samples of long
DNA molecules (5000 to similar to 160,000 base pairs) were efficiently separated
into bands in 15-mm-long channels. Multiple-channel devices operating in paral-
lel were demonstrated. The efficiency, compactness, and ease of fabrication of the
device suggest the possibility of more practical integrated DNA analysis systems.

An alternative device involves nanosphere arrays314 prepared by colloidal tem-
plating, which traps the macromolecules within a 2D array of spherical cavities
interconnected by circular holes. Across a broad DNA size range, diffusion does
not proceed by the familiar mechanisms of reptation or sieving. Rather, because
of their inherent flexibility, DNA molecules strongly localize in cavities and only
sporadically jump through holes. By reducing DNA’s configurational freedom, the
holes act as molecular weight-dependent entropic barriers.

Fluidic control in nanometer-size channels using a moving wall provides plug-
like liquid flows, offers a means for efficient routing and trapping of small mole-
cules, polymers, and colloids, and offers new opportunities to study chemistry in
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confined spaces. Networks of nanotubes and vesicles might serve as a platform to
build nanofluidic devices operating with single molecules and nanoparticles. Soft
microfabrication technologies for processing of fluid-state liquid crystalline bilayer
membranes have been presented in Karlsson et al.262 They have developed a micro-
electrofusion method for construction of fluid-state lipid bilayer networks of high
geometrical complexity up to fully connected networks with genus = 3 topology.
Within networks, self-organizing branching nanotube architectures could be pro-
duced where intersections spontaneously arrange themselves into three-way junc-
tions. It is also demonstrated that materials can be injected into specific containers
within a network by nanotube-mediated transport of satellite vesicles having de-
fined contents. Using a combination of microelectrofusion, spontaneous nanotube
pattern formation, and satellite-vesicle injection, complex networks of containers
and nanotubes can be produced for a range of applications in, for example, nanoflu-
idics and artificial cell design. In addition, this electrofusion method enables inte-
gration of biological cells into lipid nanotube-vesicle networks.

8.6.5.2 Nanoporous membranes

Nanoporous membranes containing monodisperse distributions of nanometer di-
ameter channels have been proposed as an effective medium for controlled mole-
cular transport.315 The facility with which molecular manipulations may be ac-
complished at the nanometer scale suggests their use for integrating multilevel
microfluidic systems. The use of commercially available nanoporous membranes
enables quick and economical fabrication of nanochannel architectures to pro-
vide fluidic communication between microfluidic layers. By incorporating these
nanoporous membranes into microfluidic systems, a variety of novel flow con-
trol concepts can be implemented. The cylindrical nanochannels (10 nm < d <

200 nm) of the membranes can be used as nanofluidic interconnects to establish
controllable fluidic communication between micron-scale channels operating in
different planes. Kuo et al. initially investigated the ability to manipulate macro-
scopic transport using these nanochannels,316 and recently reported on interfac-
ing the nanoporous membranes with microfluidic channels.317 More importantly,
these nanoporous membranes add functionality to the system as gateable intercon-
nects. These nanofluidic interconnects enable control of net fluid flow based on a
number of different physical characteristics of the sample stream, the microfluidic
channels and the nanochannels, leading to hybrid fluidic architectures of consider-
able versatility. Because the nanofluidic membrane can have surfaces with excess
charge of either polarity, the net flow direction inside the microdevices is princi-
pally controlled by two factors: the magnitude of the electrical and physical flow
impedance of the nanoporous membrane relative to that of the microchannels and
the surface chemical functionalities, which determine the polarity of the excess
charge in the nanochannels. The nanochannel impedance can be manipulated by
varying membrane pore size. Flow control is investigated by monitoring electroki-
netic transport of both neutral and negatively charged fluorescent probes, by means
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of laser-induced fluorescence and fluorescence microscopy, while varying solution
and nanochannel properties.

Sun and Crooks319 used multiwall carbon nanotubes as templates to fabricate
single-pore membranes. These membranes are better experimental models for test-
ing specific predictions of mass transport theories than arrays of nanopores be-
cause they require fewer adjustable parameters and they have well-defined geom-
etry and chemical structures. Using polystyrene particles as probes, they demon-
strated that quantitative information about fundamental modes of transport, such
as hydrodynamic and electrophoretic flow, can be obtained using these single-pore
membranes.

Miller et al.320 and Miller and Martin321 prepared carbon nanotube membranes
(CNMs) using chemical vapor deposition of graphitic carbon into the pores of mi-
croporous alumina template membranes. This approach yields a freestanding mem-
brane containing a parallel array of carbon nanotubes (with the outside diameter
similar to 200 nm, and a wall thickness similar to 40 nm) that spans the complete
thickness of the membrane (60 µm). The electro-osmotic flow (EOF) can be driven
across these CNMs by allowing the membrane to separate two electrolyte solutions
and using an electrode in each solution to pass a constant ionic current through the
nanotubes. The as-synthesized CNM has anionic surface charge and as a result, the
EOF is in the direction of cation migration across the membrane. In Lee et al.322

synthetic bionanotube membranes were developed and used to separate two enan-
tiomers of a chiral drug. These membranes are based on alumina films that have
cylindrical pores with monodisperse nanoscopic diameters (for example, 20 nm).
Silica nanotubes were chemically synthesized within the pores of these films, and
an antibody that selectively binds one of the enantiomers of the drug was attached
to the inner walls of the silica nanotubes. These membranes selectively transport
the enantiomer that specifically binds to the antibody, relative to the enantiomer
that has lower affinity for the antibody. The solvent dimethyl sulfoxide was used
to tune the antibody binding affinity. The enantiomeric selectivity coefficient in-
creases as the inside diameter of the silica nanotubes decreases.

Melechko et al.323 report a method to fabricate nanoscale pipes (“nanopipes”)
suitable for fluidic transport. Vertically aligned carbon nanofibers grown by
plasma-enhanced chemical vapor deposition are used as sacrificial templates for
nanopipes with internal diameters as small as 30 nm and lengths up to several mi-
crometers that are oriented perpendicular to the substrate. This method provides
a high level of control over the nanopipe location, number, length, and diameter,
permitting them to be deterministically positioned on a substrate and arranged into
arrays.

8.7 Outlook—go with the flow

As the promise of nanotechnology is beginning to be realized, the new scientific
frontiers for this field are outlined. In particular, the interface of nanotechnology
with biology seems to emerge as a rich ground for fundamental scientific research
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and engineering applications. The close link between life and aqueous environ-
ments will continue to be explored. While visions of nanomedicine may continue
to be controversial, understanding of nanoscale fluid mechanics will continue to of-
fer tools for the exploration of molecular-level drug delivery and on-site interfacing
with biological cells.

Fluid mechanics at the nanoscale is an emerging field in need of powerful com-
putational tools and innovative experimental diagnostic techniques aimed at better
understanding these phenomena. In computation there is much need for the devel-
opment of multiscale computational techniques linking the atomistic to the nano,
meso, and continuum scales. In parallel, the development of new techniques for
experimental diagnosis and manipulation of fluids at the nanoscale will have a sig-
nificant impact in the coming decades. These experiments and simulations will cer-
tainly enable new understandings and findings for the underlying flow physics. The
exploitation of these findings to areas ranging from new computer architectures to
disease fighting methods will be a breeding ground for further fluid mechanics
research at the nanoscale in the near future.
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9.1 Overview

9.1.1 Introduction

In nanotechnology, one is dealing with physical systems at a scale so small that
quantum effects are important. As the size of computer chips decreases, one even-
tually reaches the point where quantum effects, wanted or not, occur. If these quan-
tum effects can be controlled, they can be exploited to build computers that can do
some tasks more effectively than classical ones.

Moreover, quantum particles can be be used advantageously for other pur-
poses in information technology, most notably for communication and cryptog-
raphy. In fact, experiments demonstrating the feasibility of the process known as
quantum key distribution (QKD) are quite impressive. QKD, which is described
in Sec. 9.5.1, is likely to be practical long before a full-fledged quantum computer
(QC) is built.

The area of quantum information theory (QIT) encompasses quantum com-
putation, quantum communication, and quantum cryptography. A device for im-
plementing any of these is called a quantum information processor. We begin by
considering methods of encoding information in such devices.

9.1.2 Encoding information

In classical situations, information is encoded in strings of 0’s and 1’s; the basic
unit of information is a bit, which is in one of two mutually exclusive physical
states, e.g., “on” or “off,” which are interpreted as 0 and 1. Thus the state of a
classical information processor can be identified as an element of Z⊗n

2 , i.e., a binary
n-tuple.

When quantum particles are used to process information, the basic unit is a
“qubit,” which can be identified with a normalized vector in the two-dimensional
complex vector space C2. For example, one can represent 0 and 1 as

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
. (9.1)

When these states are realized using the spin components of spin- 1
2 particles, they

correspond to spin “up” and “down,” respectively; alternatively they can be real-
ized using vertical and horizontal polarization of single photons. One can then use
products to represent classical strings, e.g.,

|1001〉 =
(

0
1

)
⊗

(
1
0

)
⊗

(
1
0

)
⊗

(
0
1

)
, (9.2)
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as vectors in the vector space C⊗n
2 . However, there are many more vectors in C2.

For example, one could use the vectors

|0〉x = 1√
2

(
1
1

)
= 1√

2
(|0〉z + |1〉z), (9.3a)

|1〉x = 1√
2

(
1
−1

)
= 1√

2
(|0〉z − |1〉z), (9.3b)

as an alternative way of encoding 0 and 1, choosing the direction of a magnetic field
to quantize the spin so that its eigenvectors are characterized as “right” and “left.”
However, this is not the only possible interpretation of the vectors in Eqs. (9.3).
They can also be regarded as representing both 0 and 1, each with probability 1

2 .
More generally, the state

(
a
b

)= a|0〉 + b|1〉 (with |a|2 + |b|2 = 1) can be inter-
preted as containing 0 and 1 with probabilities |a|2 and |b|2, respectively. This is
explained in Sec. 9.2.2, when the quantum measurement process is discussed. For
now, note only that the probabilities associated with a superposition via the squared
amplitudes of coefficients in this way are nonclassical, and behave differently than
mixtures. (The term superposition is used to describe a linear combination of vec-
tors when the result is constrained to have norm 1.) The n-qubit state

|0〉x ⊗ |0〉x ⊗ . . . |0〉x = 2−n/2
∑

i1i2...in

|i1i2 . . . in〉, (9.4)

where ik ∈ {0, 1} is thus a superposition of all possible n-bit strings of 0 and 1,
each of which occurs with probability 2−n. Any action on this vector can then
be regarded as effectively acting in parallel on all possible 2n classical n-bit
strings. However, the usefulness of this parallelism is restricted by the measure-
ment process used to extract information. This is discussed in more detail in
Sec. 9.2.2. For now, note only that we are restricted to making one measurement,
which enables us to extract one piece of information, equivalent to the identifica-
tion of a classical string or binary n-tuple.

9.1.3 Effective parallelism

We describe the situation schematically as follows. In an ordinary sequential com-
puter, one has a physical device on which only one operation can be performed
at a time. Information processing then requires a long sequence of operations, as
shown schematically in Fig. 9.1. In a parallel processor machine, operations can be
performed simultaneously on n physical devices, as shown in Fig. 9.2.

For some algorithms, the length of the sequence of operations may be decreased
at a cost of employing more physical devices. Moreover, the use of n processors
yields n outputs, which can then be extracted and analyzed or combined further.
In a QC, we have only one physical device with a state that can be described by
a superposition, as shown in Fig. 9.3. The logical operations, or gates, in a QC
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are implemented by unitary operators that act on the vector, not on the individual
pieces in the superposition. The result is a single vector

∑
K yK |K〉 from which

one can extract only the information equivalent to that in n classical bits.
There is really nothing mysterious about the effective parallelism. It is an im-

mediate consequence of the fact that gates are implemented via unitary operators
that act linearly on vectors in C2n

. What is difficult is the extraction of useful in-
formation after the operation. Unlike a classical parallel processor, the accessible
information is limited by the principles of quantum measurement.

To explain this further, consider the well-known example of computing the fast
Fourier transform (FFT), which takes a vector with components xK to one with
components yK =∑

J e(2πi)J K/NxJ . On a classical computer, this can be done
on a vector of size N = 2n in O(N log N) steps. We can view this process using
N classical parallel processors schematically as in Fig. 9.4. The vertical lines be-
tween blocks in different processors reflect the fact that the reduction to log N = n

requires some swapping between processors. Nevertheless, the total combined re-
sources needed for the FFT is still Nn in the form of N physical devices and
time n.

By contrast, the quantum Fourier transform (QFT) can be viewed schemat-
ically as in Fig. 9.5. It requires only n = log N steps, but the character of the
output is quite different. To apply the QFT, one must first encode the informa-
tion in the vector x by using its components xK as the amplitudes of the vector
|φ〉 =∑N

K=1 xK |K〉. It can then be shown that the QFT can be performed in O(dn)

steps, where d is the number of binary digits. Indeed, if one accepts that the QFT is
really the FFT acting in parallel, this is almost obvious. However, the information

Figure 9.1 Schematic representation of a classical sequential computer.

Figure 9.2 Schematic representation of a classical parallel computer.

|φ〉 =
∑

K

xK |K〉 → U |φ〉 =
∑

K

xK U |K〉

Figure 9.3 Schematic representation of a quantum computer.
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Figure 9.4 FFT with N parallel processors.

|φ〉 =
N∑

K=1

xK |K〉 F→ F |φ〉 =
N∑

K=1

yK |K〉

Figure 9.5 Quantum Fourier transform.

that can be extracted from the QC is quite different. Indeed, one can not obtain any
information∗ about the Fourier coefficients yK encoded in the final state!

One might wonder if the effective parallelism has been achieved without any
mechanism for using the information. In fact, the purposes for which the QFT
is used are necessarily quite different from those of the FFT. The most common
use of the QFT occurs in situations for which (as in the period-finding algorithms
discussed in Sec. 9.4.3) the state of the QC is such that most of the yk ≈ 0 in the
final state. A measurement then yields one of the states with yk 	= 0, leading to the
identification of the set of k with nonzero yk . This is useful when the set of nonzero
yk has a particular property, such as denoting multiples of a single integer.

9.1.4 Choosing a basis

9.1.4.1 The computational basis

Since C⊗n
2 is isomorphic to C2n

, the state of a quantum information processor can
be defined as a 1D subspace of C2n

, typically described by a vector |φ〉. (As ex-
plained in Secs. 9.2.1 and 9.2.3, a state described by a vector is more properly
termed a pure state. Even if the normalization is chosen so that ‖φ‖ = 1, the rep-
resentative vector is only defined up to an overall phase factor.) It is customary to
represent 0 and 1 as a pair of orthonormal vectors in C2, as in Eq. (9.1). Taking
tensor products as in Eq. (9.2) then yields an orthonormal basis for C2n

of the form

∗Actually, one could obtain estimates of |yK |2 by repeating the entire process—encoding in |φ〉,
application of the QFT and measurement—many times. However, this defeats the purpose of using
the QC and still yields only information about |yK |.
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|j1j2 . . . jn〉 = |j1〉⊗ |j2〉⊗ . . .⊗ |jn〉. This is referred to as the “computational ba-
sis.” The elements of the computational basis can be identified with binary n-tuples
or elements of Zn

2. As in classical information processing, a state corresponding to
a binary n-tuple (j1j2 . . . jn), can be interpreted in various ways, of which the most
common is as the binary representation of an integer.

An arbitrary state or vector in C2n
can always be written as a superposition of

elements of the computational basis

|φ〉 =
∑

j1j2...jn

cj1j2...jn |j1j2...jn〉, (9.5)

with

cj1j2...jn = 〈j1j2 . . . jn, φ〉. (9.6)

Now, a linear operator can be defined by specifying its action on a set of basis
vectors, such as those in the computational basis. It can then be extended to arbi-
trary vectors in C2n

by linearity. The so-called “effective parallelism” is actually
an artifact of the convention of defining gates on a basis that can be identified with
classical, as well as quantum, states but letting them act on arbitrary states. For
example, the action of a rotation on a vector in three dimensions can be specified
by an axis and an angle, or by a 3× 3 matrix (with elements given by Euler angles)
in a particular basis. However, one need not decompose a vector into components
in that basis to implement the rotation. The rotation operation is independent of its
description in a particular basis.

The implementation of a gate requires that one find a physical operation that has
the desired effect, regardless of how it is defined. This is not at all trivial and is the
essence of the construction of a QC or quantum information processor. Although
discussion of practical implementation is beyond the scope of this chapter, the
important point is that in any successful implementation, the state of the system can
be described by any vector in C2n

and the gates affect the state of the system and
not its basis vectors. Indeed, the state of a physical system is entirely independent
of the basis in which one chooses to represent it.

In the computational basis, a measurement can be regarded as a mechanism
for identifying one of the basis vectors, Even when the system is in a superposi-
tion of basis vectors, the outcome of the measurement always yields one of the
computational basis states, as explained in Sec. 9.2.2.

9.1.4.2 Nonorthogonal bases

Thus far, we have considered only orthogonal bases for encoding binary strings; in
fact, as explained in Sec. 9.2.6, only orthogonal states can be reliably distinguished.
Nevertheless there are situations in which it is advantageous to use nonorthogonal
bases. One of these occurs when dealing with noise. For some types of noise it
is actually possible to more reliably distinguish the corrupted outputs of a noisy
channel when nonorthogonal inputs are used.43,79,130
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Some procedures in quantum cryptography also use nonorthogonal encodings.
For example, one might use

|0〉A =
(

1
0

)
|1〉A = 1√

2

(
1
1

)
, (9.7a)

or

|0〉B = 1√
2

(
1
−1

)
|1〉B =

(
0
1

)
. (9.7b)

An application using such encodings for QKD is considered in Sec. 9.5.1.
One might also wonder if one could use a single qubit to encode more than just

0 and 1. For example, could one choose to represent 0, 1, 2, 3 as

|0〉 =
(

1
0

)
|1〉 = 1√

2

(
1
1

)
|2〉 =

(
1
0

)
|3〉 = 1√

2

(
1
−1

)
,

↑ → ↓ ←
(9.8)

corresponding to, say, spin up, right, down, and left? One might even note that the
most general state of a qubit can be written as

√
1− c2|0〉 + c|1〉 or

(
sin θ

eiϕ cosθ

)
, (9.9)

suggesting that one could represent any real number in the interval [−1, 1] or
[0, 2π ] or even a pair of real numbers corresponding to the angles θ and ϕ. One
might expect that there would be a practical limit to the accuracy with which one
could distinguish between such encodings of real numbers. However, there is a
more significant constraint known as the Holevo bound on the accessible informa-
tion. This bound, stated precisely (and proved) in Sec. 9.6.1, implies that one can
not extract more information from n qubits than for n classical bits. Thus one must
pay a price to use encodings of the form of Eq. (9.8). This price might be a high
error rate, as in the B92 protocol for QKD, or the need to provide supplementary in-
formation, as in the BB84 protocol. In these cryptographic procedures (explained
in Sec. 9.5.1), one is willing to pay this price because the use of nonorthogonal
states provides protection against eavesdroppers that is not available when orthog-
onal encodings are used.

9.1.4.3 Physical implementations

Writing states as vectors in C2n
would serve little purpose unless they can be re-

alized in a physical system. There are two common, and rather natural, ways of
implementing the qubit states already described. One uses states of spin- 1

2 parti-
cles, such as electrons or protons. The other uses the polarization of single photons.
Although the geometric properties of the latter are quite different from the former;
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Table 9.1 Some states of a two-level quantum system.

Spin Polarization

|0〉z |0〉
(

1
0

)
up ↑ vertical ↑

|1〉z |1〉
( 0

1

)
down ↓ horizontal →

|0〉x 1√
2

(|0〉 + |1〉) 1√
2

(
1
1

)
right → ↗

|1〉x 1√
2

(|0〉 − |1〉) 1√
2

(
1
−1

)
left ↓ ↘

|0〉y 1√
2

(|0〉 + i|1〉) 1√
2

(
1
i

)
out right circular �

|1〉y 1√
2

(i|0〉 + |1〉) 1√
2

(
i
1

)
in left circular �

their algebraic representations are equivalent. This correspondence is summarized
in Table 9.1.

In addition to forming states of qubits, one also needs to control them, i.e.,
to implement gates. This poses a greater challenge. In trying to meet it, physi-
cists have proposed a number of other possible implementations. In fact, any two-
dimensional quantum system, such as two low-level energy states of an atom, will
suffice.

One could, in principle, use a quantum information processor whose funda-
mental units (called “qutrits” or “qudits”) are described by states in C3 or Cd ,
respectively. For example, one might implement a “qutrit” using a spin-1 particle,
or three low-lying states of an atom. Although the feasibility and utility of this
have yet to be established, examining the properties of such systems is an active
area of research. There are some significant differences between d = 2 and d > 2,
and understanding these provides additional insight into the special properties of
qubit systems. Moreover, because multiqubit systems correspond to d = 2n one
must understand at least some facets of this situation.

The actual implementation of a full-fledged QC is an extremely challenging
problem in nanotechnology that is beyond the scope of this chapter. For an excel-
lent overview, see DiVincenzo.36 Some other types of quantum information proces-
sors have been implemented successfully, most notably QKD, which is discussed
in Sec. 9.5.1.

9.1.5 Perspective

9.1.5.1 Reversibility

Historically, quantum computation grew out of questions raised by Landauer88

about the reversibility of information processing. It was subsequently shown that
classical computation could be done reversibly if suitable gates were used. While
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considering this question, Benioff9–11 developed an early quantum model of a com-
puter. Manin,97 independently, and Feynman41,42 (probably influenced89 by Be-
nioff’s work), speculated about the possibility that QCs might be able to simulate
quantum systems in ways that can not be done on a classical computer. The explicit
introduction of quantum parallelism seems to have first appeared in the fundamen-
tal paper of Deutsch.34 Reversible models of quantum computation, which use
unitary operators as gates, are quite natural, and the action of unitary operators on
superpositions gives rise to effective parallelism.

As a result, reversibility is sometimes regarded as an essential component of
quantum computation. However, a few years ago Nielsen106 (see also Ref. 90)
showed that measurements could also be used to generate gates. This development
was followed by several proposals for using measurements to construct irreversible
or “one-way” QCs of which the most extensively developed is that by Raussendorf
and Briegel.118–120

9.1.5.2 Circuits and models

Although the earliest model for quantum computation was that of a quantum Turing
machine, the most common model is that of a quantum circuit composed from a
small set of unitary operations known as quantum gates. In fact, it can be shown
that a rather short list of 1-bit gates, together with one type of nontrivial 2-bit gate∗
(e.g., CNOT or SWAP), suffice in the sense that any unitary operation on n bits can
be approximated as a product of these basic gates. To analyze the computational
complexity of an operation on n bits, we must know how many basic 1- and 2-bit
gates are required to implement it. For this reason, some introductions to quantum
computation focus on the quantum circuit model.

In a departure from this trend, this chapter does not use the quantum circuit
model at all. Moreover, the only n-bit operator analyzed is the QFT. The main
reason for this is my firm conviction that understanding the role of the quantum
measurement process is essential to understanding quantum algorithms. Moreover,
the key feature of a particular algorithm is the method it uses to convert the initial
state of the QC to one in which a measurement can yield useful information. At
this point, the obstacle to developing new algorithms does not seem to be finding
efficient decompositions of n-bit unitary operators, but finding methods for chang-
ing the state of the computer to one from which a measurement can extract useful
information.

Furthermore, a detailed description of a quantum circuit is not required to gauge
the complexity of an algorithm. Indeed, most texts on the analysis of algorithms
for classical computation describe them in a pseudo-language, using “if-then-else
style” constructs, rather than machine language or some other decomposition into
primitives. A similar approach to describing algorithms is used here, although the
language is different.

∗A CNOT gate takes |j〉 ⊗ |k〉 $→ |j〉 ⊗ |j + k〉, and SWAP |j〉 ⊗ |k〉 $→ |k〉 ⊗ |j〉. See also
Eq. (9.121).
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9.1.5.3 Outline

Sections 9.2.1 and 9.2.2 are critical for understanding the rest of the chapter.
The reader primarily interested in algorithms can move to Sec. 9.4 after reading
Secs. 9.2.1, 9.2.2, and 9.2.5. Section 9.2.4 can be skipped on first reading; this
material, although important, is directly relevant only to Sec. 9.6. Section 9.3 con-
tains material that is important for understanding quantum correlations, but is most
relevant primarily to Sec. 9.5.

Section 9.4 describes several important algorithms for quantum computation.
Section 9.5 describes some procedures used in quantum cryptography and quan-
tum communication. Section 9.6 gives a brief description of a few issues associ-
ated with noise, namely, the fundamental Holevo bound on accessible informa-
tion, channel capacity, the quantum error correction process, other issues in fault-
tolerant computation, and other types of encodings.

This presentation follows the convention of using physicists’ Dirac notation
for vectors and projections; indeed, this has already been done implicitly. An ex-
planation is given in Appendix 9.A and is essential to understanding the quantum
information processing (QIP) literature, as well as this chapter. Appendixes 9.B
and 9.C summarize some standard mathematical results that are needed, but may
be unfamiliar to many readers. Appendix 9.D gives a brief overview of some issues
regarding continuous variables and permutational symmetry.

9.2 Basic quantum principles

9.2.1 Isolated systems

As discussed at the start of Sec. 9.1.4, the state of an isolated quantum system can
be described (up to an arbitrary phase factor) by a normalized vector in an appro-
priate Hilbert space H. For most purposes in QIP, it suffices to assume H=C2n

.
The time development of an isolated system is determined by a self-adjoint

operator, H , known as the Hamiltonian. The time development of a system in the
state |ψ〉 is then governed by the Schrödinger equation

ih̄
∂

∂t
|ψ(t)〉 =H |ψ(t)〉. (9.10)

This implies that the time-evolution is unitary, i.e., that |ψ(t)〉 = U(t)|ψ(t0)〉,
where U(t) is a one parameter unitary group. When the Hamiltonian is indepen-
dent of time, U(t)= e−ih̄tH so that |ψ(t)〉 = e−ih̄tH |ψ(t0)〉.

A gate in quantum computation is usually regarded as a fixed unitary opera-
tor V . Any gate can be written in the form V = U(t1)− U(t0) for some unitary
group. In fact, given V , there is a self-adjoint operator A such that V = eiA, in
which case V = U(1) with U(t) = eitA. Thus, one might regard a sequence of
unitary gates VnVn−1 . . . V2V1 as arising from the dynamics of a Hamiltonian of
the form eit[H0+∑

k δ(t−tj )Aj ] with Vj = eitj Aj . In general, the Aj do not commute;

Downloaded from SPIE Digital Library on 18 Jun 2012 to 58.97.130.72. Terms of Use:  http://spiedl.org/terms



406 Mary Beth Ruskai

therefore, this correspondence is not exact. However, it does demonstrate that the
state of a QC is essentially governed by the dynamics of the Hamiltonian of the
system.

9.2.2 Quantum measurement

9.2.2.1 The measurement postulate

One of the assumptions of quantum theory is that observables are represented
by self-adjoint operators. Such operators always have a spectral decomposition,∗
which we write in the form

A=
∑

k

ak|αk〉〈αk| =
∑

k

akEk, (9.11)

where ak is an eigenvalue of A, |αk〉 is the corresponding eigenvector, and
|αk〉〈αk| = Ek is the projection onto its eigenspace. We have made the simplify-
ing assumption that A has only discrete spectra, as this suffices for most purposes
in QIP. One of the fundamental principles of quantum theory is that when a mea-
surement is made on a system in the state |ψ〉 using the observable represented
by A, then the following hold:

1. The only possible outcome is one of the eigenvalues ak .
2. After the measurement the system is an eigenstate |αk〉 of ak.
3. The probability of this outcome is |〈ψ, αk〉|2 = 〈ψ, Ekψ〉.

If many measurements of A are made with the system in the state |ψ〉, then these
postulates imply that the average value of the observable A is 〈ψ, Aψ〉.

The measurement process may seem quite remarkable. A system in one state
|ψ〉 is changed rather suddenly (and irreversibly) into another state |αk〉. Moreover,
information about the initial state has been lost; only the state of the system after
the measurement is known. We shall not even attempt to explain how this happens;
it has been the subject of extensive debate150 since the dawn of quantum theory.
However mysterious one may find this description of the measurement process,
its validity as a physical model has been verified experimentally far beyond any
reasonable doubt.

It may help to think of the special case of measuring the polarization of a sin-
gle photon by using a filter and a detector. Suppose the filter is designed so that
only vertically polarized photons go through. If a photon is polarized at a 45-deg
angle (or if it is circularly polarized), it may or may not go through the filter, with

∗For more information on the postulates of quantum theory, see Sec. 2.2 of Ref. 107 or a text
on quantum mechanics, e.g., Landau and Lifschitz.87 Jordan157 gives a very readable summary of
the spectral theory of operators needed for quantum theory; unifortunately, it is not readily avail-
able. The many excellent mathematics texts that discuss spectral theory include Halmos,56 Horn and
Johnson,65 and Naylor and Sell.105
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probability 1
2 . But if the photon passes through the filter, what emerges is always a

vertically polarized photon. Thus, if a photon is detected, one cannot conclude that
a vertically polarized photon was sent. The possible polarizations of the photon be-
fore it passed through the filter might have been at a 30-deg angle, a 45-deg angle,
or right circular. The only thing that can be said with certainty is that the photon
was not horizontally polarized; no photon in that state could go through the filter.

9.2.2.2 von Neumann versus POVM measurements

For simplicity, we explained the measurement process as if all eigenvalues are
nondegenerate. In the case of degenerate eigenvalues, one should use the expres-
sion

∑
k akEk with distinct eigenvalues ak and projections Ek onto eigenspaces

whose dimension is the degeneracy. A measurement can then be identified with
a set of orthogonal projections, i.e., a set of self-adjoint operators {Ek} satisfying
Ej Ek = δjkEk and

∑
k Ek = I (where δjk denotes the Kronecker delta for which

δjj = 1 and δjk = 0 when j 	= k). This is called a von Neumann measurement.
Many treatments of quantum theory consider only von Neumann measure-

ments, and these suffice for identifying the computational basis as well as for
quantum error correction. The actual measurement process will, in general, use
a set of commuting self-adjoint operators sufficient to distinguish between a set
of subspaces. For example, the identification of the state of a hydrogen atom with
quantum numbers n, �, m is the result of measuring the energy, angular momen-
tum, and the so-called z component of angular momentum. Similarly, the operators
{Zk}, k = 1 . . .n, where

Zk = I ⊗ . . . I ⊗ σz ⊗ I . . .⊗ I, (9.12)

with σz in the kth position, suffice to make measurements in the computa-
tional basis. Indeed, the eigenvalues ±1 of Zk correspond to ik = 0, 1 since
Zk|i1 . . . ik . . . in〉 = (−1)ik |i1 . . . ik . . . in〉.

In certain situations in QIP, one needs a more general type of measurement
known as a positive operator valued measure (POVM). In this case, the require-
ment Ej Ek = δjkEk (which implies that each Ek has eigenvalues 0, 1) is dropped
and replaced by the weaker requirement that Ek is positive semi-definite. Thus, we
define a POVM as a set of operators {Fb} such that each Fb > 0 and

∑
b Fb = I .

Unlike a von Neumann measurement, the result of a POVM depends on the order
in which the operations are performed. Nevertheless, a POVM can always be rep-
resented as a von Neumann measurement on a larger Hilbert space involving an
auxiliary space in much the same way as in Sec. 9.2.4.

9.2.3 Mixed states

Representing states of an isolated quantum system, also known as pure states, by
vectors is not entirely satisfactory. A state can also be represented by the projection
|ψ〉〈ψ| onto the subspace spanned by |ψ〉. This has the advantage of avoiding
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the ambiguity associated with overall phase factors. Thus, every pure state can be
described uniquely by a rank-one projection.

A mixed state ρ can then be defined as a convex combination of pure states,
i.e.,

ρ =
∑

k

pk|ψk〉〈ψk| with pk > 0,
∑

k

pk = 1. (9.13)

There is a sense in which a mixed state can be regarded as a (classical) proba-
bility distribution over quantum states. The pure states in Eq. (9.13) need not be
orthogonal; when they are, Eq. (9.13) is simply the spectral decomposition of ρ. If
a measurement is made on a system in a mixed state, the average outcome is

〈A〉 =
∑

k

pk〈ψk, Aψk〉 =
∑

k

pkTrA(|ψk〉〈ψk|)= TrAρ, (9.14)

where Tr denotes the trace as defined in Appendix 9.B.
A density matrix is a positive semidefinite matrix ρ such that Trρ = 1. Thus,

there is a one-to-one correspondence between mixed states and density matrixes.
A density matrix ρ describes a pure state if and only if ρ2 = ρ.

Mixed states arise in various contexts, including quantum statistical mechan-
ics, subsystems of larger systems, and noisy quantum systems. Roughly speaking,
a mixed quantum state can be thought of as having two types of probabilities. That
given by the pk in Eq. (9.13) behaves very much like classical probability describ-
ing a distribution over a set of (pure) quantum states. However, these quantum
states also have the nonclassical probabilistic properties associated with superpo-
sitions. Consider the three density matrixes

|0〉〈0|x = 1

2

(
1 1
1 1

)
, |1〉〈1|x = 1

2

(
1 −1
−1 1

)
,

1

2

(
1 0
0 1

)
. (9.15)

All three yield +1 with probability 1
2 and −1 with probability 1

2 when a measure-
ment is made using σz. However, the first two are pure states that give very different
results when a measurement is made using σx ; the first would yield +1 with prob-
ability 1 and the second −1 with probability 1; but the third would give ±1, each
with probability 1

2 . Although all three matrixes have the same diagonal, they have
different off-diagonal elements, which express quantum correlations.

It is useful to have a quantitative measure of the extent to which a state is pure or
mixed. Although there are many possibilities, we consider only the von Neumann
entropy, which is the most important and widely used. It is defined as

S(ρ)=−Trρ log ρ =−
∑

k

λk log λk, (9.16)

where λk are the eigenvalues of ρ and we use the convention that 0 log0 = 0.
Note that the von Neumann entropy of a given density matrix could be regarded
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as the Shannon entropy∗ of its eigenvalues. However, we prefer to consider the
von Neumann entropy as more fundamental. Indeed, von Neumann defined his
entropy‡ in 1927, more than 20 years before Shannon put forth his theory in 1948.
Moreover, the von Neumann entropy includes the Shannon entropy as a special
case.

In fact, one can embed classical discrete probability within the formalism asso-
ciated with mixed quantum states. A discrete probability vector with elements pk

can be written as a diagonal matrix with elements pkδjk . It is sometimes useful to
let D(Cd) denote the diagonal d × d matrixes. The positive semidefinite matrixes
in D(Cd) then correspond to classical probability vectors.

9.2.4 Open systems

9.2.4.1 A basic model of noise

Noise arises because no system is really isolated, but interacts with its environment.
Denote the Hilbert space of the system (typically a QC or quantum communica-
tion channel) by HC and that of the environment by HE . The combined system is
described by a Hamiltonian acting on HC ⊗HE with the form

HCE =HC ⊗ IE + IC ⊗HE + VCE, (9.17)

where HC is the Hamiltonian of the QC, HE is that of the environment, and VCE

describes the interaction between the QC and its environment.
The statement that the system is in the pure state ψ0

C can carry hidden as-
sumptions; in this case, that the total system is in a product state of the form
ψ0

C ⊗ψ0
E ≡ 0

CE , which evolves in time according to

| CE(t)〉 = UCE(t)|ψ0
C ⊗ψ0

E〉 =
∑

k

ck |ψk
C ⊗ψk

E〉, (9.18)

where UCE(t) is the unitary group determined by Eqs. (9.10) and (9.17) and we
have rewritten | CE(t)〉 as a superposition of products of two sets of basis vectors
whose first elements are |ψ0

C〉 and |ψ0
E〉, respectively. However, Eq. (9.18) is some-

what unwieldy as a description of the system C. One can obtain a more compact
description by taking the partial trace (explained in Appendix 9.B) over the Hilbert
space HE . The result

TrE(| CE〉〈 CE|)=
∑

k

|ck|2|ψk
C〉〈ψk

C | (9.19)

∗Those unfamiliar with Shannon entropy can regard it as a special case of the von Neumann entropy
in which the density matrix is diagonal.

‡Admittedly, von Neumann was motivated by very different considerations than Shannon. He
wanted to extend classical statistical mechanics to the quantum setting, and his definition was a nat-
ural generalization of Gibbs’ approach. It is remarkable that two such different contexts led to very
similar mathematical structures.
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is a mixed state on HC . Having motivated this definition, we now extend it to
arbitrary (mixed) states as

ρC $→"(ρC)≡ TrE[UCE(t0)ρC ⊗ γE U
†
CE(t0)], (9.20)

with t0 fixed and with γE a fixed reference state on HE . The map " gives a snap-
shot of the effect of noise at time t0. Maps of this form are known as completely
positive and trace-preserving (CPT) maps.

At a minimum, one would expect such a map to take density matrixes to density
matrixes. This implies that it should preserve the trace, i.e., Tr "(ρ) = Trρ, and
that it should be positivity preserving in the sense that it takes positive semidefinite
matrixes to positive semidefinite matrixes. In fact, maps of the form of Eq. (9.20)
satisfy a stronger condition known as “complete positivity,” which means that
I ⊗" is also positivity preserving on any space of the form Cn ⊗ HC . There
is an extensive literature on completely positive maps in various contexts, some
quite abstract. We note here only that complete positivity implies that " is also
positivity preserving when extended to include any system with which the QC is
entangled.

At first glance, this model of noise may seem rather different from the com-
mon classical one of convolution with another signal. However, one can show that
the action of a CPT map restricted to diagonal matrixes, " : D(Cd) $→ D(Cd),
is equivalent to the action of a column stochastic matrix on the probability vectors
given by the diagonals, and a convolution is equivalent to multiplication by a cyclic
stochastic matrix. Thus, the noise model of CPT maps includes classical noise as a
special case.

9.2.4.2 Terminology

A variety of names have been used for these CPT maps in the QIP literature. In
the 1990s, they were often referred to as “superoperators” (because they are lin-
ear operators acting on operators); however, this is somewhat unsatisfactory since
the same term is used in other contexts for maps that do not satisfy the special re-
quirement of complete positivity. The term “quantum operation,” employed in the
influential book of Nielsen and Chuang,107 is frequently used. The term “stochastic
map” is sometimes used to reflect the fact that CPT maps can be regarded as the
noncommutative analogue of the action of a column stochastic matrix on a prob-
ability vector. This terminology has the merit that a unital CPT map, i.e., one for
which "(I)= I as well, is naturally called “bistochastic,” but this does not seem
to have caught on. Because of the role played by CPT maps in the study of noisy
quantum communication, they are sometimes referred to simply as “channels.”

9.2.4.3 Equivalent descriptions

There are several important equivalent ways of describing CPT maps.
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• Choi31 showed that a linear map on B(Cd) (the d×d matrixes acting on Cd )
is completely positive if and only if the matrix

�" ≡ (I ⊗")(|β〉〈β|) (9.21)

is positive semidefinite, where

β = d−1/2
∑

k

|k〉 ⊗ |k〉. (9.22)

Moreover, there is72 a one-to-one correspondence between CP maps on
B(Cd) and positive semidefinite matrixes on Cd2

. By restricting to matrixes
that also satisfy the condition TrB� = IA (or TrA� = IB ), one can extend
this correspondence to CPT maps (or to unital CP maps).

• In QIP, a CPT map is often given by its Kraus representation,85,86 which is a
set of operators Ak (often called Kraus operators) satisfying

"(P )=
∑

k

AkP A
†
k with

∑
k

A
†
kAk = I. (9.23)

This representation is not unique; indeed, if Ãj =∑
k ujkAk with U uni-

tary, then {Ãj } also forms a set of Kraus operators for the map ". However,
Choi31 gave a canonical prescription for Ak in terms of the eigenvectors of
the matrix �" in (9.21). (For a very nice exposition of this construction see
[Ref. 91].) Finally, note that "(I)= I ⇔∑

k AkA
†
k = I .

• Stinespring145 showed that given a CPT map " one can always find an aux-
iliary space HB , a reference state QB , and a unitary operator U on H⊗HB

such that

"(P )= TrB[UP ⊗QBU†]. (9.24)

Stinespring’s fundamental work145 considerably predated that of Kraus.85,86

Nevertheless, the Kraus representation does provide a convenient mechanism
for constructing Eq. (9.24), as explained∗ in Sec. III.D of Ref. 123.

Thus, Stinespring showed that any CPT map can be represented as if it arose
from the noise model in Sec. 9.2.4.1. The Kraus and Stinespring representations
are really equivalent, but the former is more commonly used in QIP.

∗In Ref. 123 this result was attributed to Lindblad,94 who obtained it using another variant of the
Stinespring representation and showed its utility in his work on entropy inequalities.
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9.2.5 Notation and Pauli matrixes

9.2.5.1 Pauli matrixes

The three Pauli matrixes,

σx =
(

0 1
1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0
0 −1

)
, (9.25)

are extremely important in QIP where they play a number of different roles. For
example, the standard choice for encoding 0 and 1, as given in Eq. (9.1), uses the
eigenstates of σz; the alternative given in Eq. (9.3) uses eigenstates of σx .

It is often convenient to replace the subscripts x, y, and z by 1, 2, and 3. One
can then write the anticommutation relations as

σj σk + σkσj = 2Iδjk, (9.26)

and note that Eq. (9.26) follows from the fundamental property

σj σk = iσ�, (9.27)

with j , k, and � cyclic. The Pauli matrixes also represent some of the basic single-
qubit operations used in QIP. In particular σx |j〉 = |j + 1〉, where j = 0 or 1 de-
notes a vector in the basis (9.1) and addition is mod 2; and σz|j〉 = (−1)j |j〉. When
these actions are desired and implemented in a controlled way, they are regarded as
gates; when they arise unwanted as the result of noise, the Pauli matrixes represent
fundamental errors.

Moreover, any single-bit error can be written as a linear combination of the
identity and Pauli matrixes, and any multibit error as a linear combination of prod-
ucts of Pauli matrixes and/or the identity. This has important implications for quan-
tum error correction, as discussed in Sec. 9.6.3.3.

9.2.5.2 Bloch sphere representation

The Pauli matrixes, together with the identity I on C2, form an orthonormal basis
with respect to the inner product defined by Eq. (9.126) for the vector space of
B(C2) of 2 × 2 matrixes. When using them in this context, it is convenient to
define σ0 = I . Then one can write any 2× 2 matrix A in the form A=∑3

k=0 akσk .
Moreover, A=A†⇔ all ak are real; TrA = 2a0; and A is positive semi-definite

⇔
√∑3

k=1 a2
k ≤ a0. Thus, one can write the density matrix for a mixed state on C2

in the form

ρ = 1

2
[I +w · σ ], (9.28)

where w ∈ R3 and |w| ≤ 1. Moreover, ρ is a pure state if and only if |w| = 1
This gives a one-to-one correspondence between pure states in C2 and unit vectors
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in R3, called the Bloch sphere representation, shown in Fig. 9.6. This picture is
extremely useful. For example, the image of the Bloch sphere under a CPT map is
an ellipsoid. However, not every ellipsoid is the image of a CPT map. For further
discussion, see Ref. 125.

9.2.5.3 Rotations and the Hadamard transform

There is one-to-one correspondence between rotations in R3 and unitary matrixes
on C2 with detU = 1. In particular, if ρ = 1

2 [I +w · σ ] $→U†ρU , with U unitary,
then there is a rotation R such that w $→ Rw and U†ρU = 1

2 [I +Rw ·σ ]. Alterna-
tively, σ $→RT σ corresponds to a rotation of the Bloch sphere, and the relations in
Eqs. (9.26) and (9.27) are invariant under rotations. Since ρ = 1

2 [I + Rw · RT σ ],
the density matrix ρ corresponds to the point Rw on the Bloch sphere in the rotated
basis RT σ .

The unitary matrix H = 1
2

(1 1
1 −1

)
, known as the Hadamard transform or

Hadamard gate, plays an important role in QIP. It is self-adjoint as well as unitary,
i.e., H = H † = H−1; and H σxH = σz and vice versa. Thus, H maps the basis
(9.1) to (9.3) and vice versa. However, since detH =−1, the Hadamard transform
does not correspond to a rotation.

9.2.6 No-cloning principle

The standard formulation of the quantum measurement process, which leaves a
system in an eigenstate of the observable measured, suggests that one cannot obtain
sufficient information about a state to duplicate it. In 1982, Wootters and Zurek154

put this into precise form and gave a proof of what is now called the “no-cloning
theorem,” although I prefer the term “principle.” Their argument is predicated on
the assumption that controlled quantum processes can only be carried out by uni-
tary operations. Hence, the question is, given a Hilbert space H can one find a

Figure 9.6 Bloch sphere representation.
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unitary operator U (on the larger space H⊗H⊗H), which can convert an arbi-
trary vector ψ ∈H into a vector containing two copies of ψ . In other words, can
one find a unitary U that satisfies

U
(
ψ ⊗ α⊗ β

)= ψ ⊗ψ ⊗ γ, (9.29)

where α and β are fixed vectors that may be chosen explicitly if desired. Since ψ

is arbitrary, it is also true that

U
(
φ ⊗ α⊗ β

)= φ ⊗ φ ⊗ δ, (9.30)

for any φ, and there is no loss of generality in assuming that all of the vectors
are normalized to 1. Then the fact that a unitary operator preserves inner products
implies

〈φ, ψ〉 = 〈φ, ψ〉2〈γ, δ〉. (9.31)

From this (and the conditions for equality in the Schwarz inequality) one obtains a
contradiction unless φ = ψ or 〈φ, ψ〉 = 0, i.e., one cannot clone arbitrary vectors,
but only those in a fixed orthonormal basis. Now one might well ask whether this
is not belaboring the obvious since a unitary operator is linear and a mapping of
the form ψ $→ ψ ⊗ ψ is manifestly nonlinear. Clearly, the impossibility result is
implicit in the restriction to linear unitary operations. However, one gains some-
thing more, namely, that one can clone a fixed set of orthonormal vectors. In the
context of QIT, this means that one also recovers the result that one can clone the
subset of vectors corresponding to classical bits.

Moreover, we have proved only that cloning is impossible within a certain
framework or model. The argument does not apply in alternative theories, such
as Bohmian mechanics, which include “hidden variables” with nonlinear behavior.
If such theories cannot exclude cloning on other grounds, there are practical im-
plications. For example, cloning would threaten the security of the QKD described
in Sec. 9.5.1. Advocates of alternative theories have focused on recovering the
predictions of conventional quantum theory. We are now in a position to consider
consequences that are not only experimentally testable, but may have practical ap-
plications. Those who want some alternative theory to be taken seriously ought to
propose such experiments.

9.3 Entanglement

9.3.1 Bell states and correlations

We begin by describing a special set of states on C2 ⊗ C2 = C4 known as the
maximally entangled Bell states. These can be defined so that, if expanded in the
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form

|βk〉 =
∑
j,k

ajk|jk〉, (9.32)

the coefficient matrix ajk is exactly that of the Pauli matrix σk (with the convention
that σ0 = I ). They are given explicitly in Table 9.2, from which one can see that
they also satisfy |βk〉 = (σk⊗ I )|β0〉. The Bell states are simultaneous eigenvectors
to the commuting operators σx ⊗ σx and σz ⊗ σz with the eigenvalues shown in
Table 9.2. Therefore, these states can be identified by a measurement, known as a
“Bell measurement” with this pair of observables.

9.3.2 An experiment

Suppose that every morning when you log onto your computer the screen shows
three boxes

A B C

flashing on and off with the words “CLICK ME.” You cannot proceed to check
your e-mail (or do anything else) until you choose one of the boxes. As soon as
you click, the other two boxes disappear and the remaining box changes to either
Win or Lose indicating that your “frequent web buyer” account has won or

lost 500 points.
You choose at random, but, in the hope of finding a better strategy, keep careful

notes of your choice and the result. The game appears fair, in the sense that you
win 50% of the time; however, no strategy appears. After some months, you attend
an SPIE conference where you meet a colleague from the opposite coast who uses
the same Internet provider and has kept similar records. You compare notes and
discover an amazing coincidence. On those days when you both choose the same
box, one wins and the other loses. Further investigation reveals that other engineers
using this particular Internet provider seem to be paired up in a similar way. When

Table 9.2 Bell states and eigenvalues.

σx ⊗ σx σz ⊗ σz

|β0〉 = 1√
2

(|00〉 + |11〉) +1 +1 (9.33a)

|β1〉 = 1√
2

(|01〉 + |10〉)= (σx ⊗ I )|β0〉 +1 −1 (9.33b)

|β2〉 = i√
2

(|10〉 − |01〉)= (σy ⊗ I )|β0〉 −1 −1 (9.33c)

|β3〉 = 1√
2

(|00〉 − |11〉)= (σz ⊗ I )|β0〉 −1 +1 (9.33d)
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two members of a pair choose the same box, one, and only one, wins. It appears
that the Internet entrepreneur is sending out paired messages programmed so that
the boxes are complementary—e.g., if your boxes are coded W W L, your partner’s
are L L W.

However, one astute pair notices something curious. On the days when they
choose different boxes, both win 3

8 of the time and both lose 3
8 of the time; only

1
4 of the time does one win and the other lose with different boxes. Yet, an ele-
mentary calculation shows that with complementary pairs, both should win 1

4 and
both should lose 1

4 of the time. This seems to eliminate the complementary box hy-
pothesis; moreover, it would also imply uncorrelated probabilities when the parties
choose different boxes.

What other explanations are possible? The Internet provider (located in Kansas)
may be sending entangled pairs of polarized photons. Clicking on box A, B, or C
selects one of three polarization filters set at 120◦ angles. A “win” occurs when the
photon passes through the filter and hits the detector.

Why is this explanation consistent? Let

|φ〉 = i|β2〉 = 1√
2

(|01〉 − |10〉), (9.34)

and consider an alternative description of the system in a rotated basis for which

|0〉 = cosθ |0̂〉 + sin θ |1̂〉 (9.35a)

|1〉 = − sin θ |0̂〉 + cos θ |1̂〉. (9.35b)

It is not hard to see that the state |φ〉 (known as a “singlet”) has the same form in any
rotated basis, i.e., |φ〉 = 2−1/2(|0̂1̂〉−|1̂0̂〉). Thus, whenever the two players choose
the same rotation, one, and only one, wins. Choosing different boxes is equivalent
to one party leaving the basis unchanged and the other choosing a rotation by±2π

3 .
Writing |φ〉 accordingly, one finds

|φ〉 = 1√
2

(− sin θ |00̂〉 + cosθ |01̂〉 + cosθ |10̂〉 + sin θ |11̂〉). (9.36)

Thus, the probability of win-win is the amplitude squared of the coefficient of
|00̂〉, which is 1

2 sin2 θ = 3
8 , when θ =±2π

3 . Similarly the probabilities of win-lose,

lose-win, and lose-lose are determined by the coefficients of |01̂〉, |10̂〉 and |11̂〉,
respectively; for θ =±2π

3 , these are 1
4 , 1

4 , and 3
8 .

9.3.3 Bell inequalities and locality

The analysis in Sec. 9.3.2 shows how conventional quantum theory explains the
results of an idealized experiment. However, it does not rule out other explanations,
i.e., it does not resolve the question of whether some alternative theory might also
give a satisfactory explanation.
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Moreover, because these correlations involve only the spin components, they
should exist even for particles widely separated in spatial distance. This raises
questions about locality, e.g., whether quantum correlations can be exploited for
superluminal (faster than light) communication.

Bell considered this question and showed that if a theory is both local and has
hidden variables, the correlations must satisfy certain inequalities, known as “Bell
inequalities.” The proofs of these inequalities require only elementary classical
probability; the subtlety comes in a careful definition of what is meant by “local”
and “hidden variables.” The actual experiments designed to test such inequalities
have found that they are violated and that the correlations do not depend on dis-
tance. Thus far, quantum mechanics is the only theory which, albeit nonlocal, can
explain these correlations without permitting superluminal communication. (This
requires a distinction between “passive” and “active” nonlocality.) For further dis-
cussion see Bell,8 Faris,40 Mermin,102 Werner and Wolf,149 and Wick.150

Experiments of the type described in Sec. 9.3.2 are often referred to as “EPR”
experiments because of their connection to a famous 1935 paper of Einstein,
Podolosky, and Rosen38 on the implications of quantum correlations at long dis-
tances. However, the original EPR proposal was for an experiment using the con-
tinuous variables of position and momentum. A variant using discrete two-level
systems was first discussed∗ by Bohm21 in 1951. However, experiments with an-
gles other than 90◦ were neither considered nor performed, until after the work of
Bell8 in the 1960s.

9.3.4 An important identity

The identity in Eq. (9.37) plays a key role in the quantum process known as “tele-
portation,” described in Sec. 9.5.4. Let |φ〉 = a|0〉+ b|1〉 be the state of a qubit and
β0 be the Bell state of Eq. (9.33a). Then

|φ〉R ⊗ |β0〉ST = 1

4

3∑
k=0

|βk〉RS ⊗ σk|φ〉T , (9.37)

where we have introduced subscripts to emphasize that we are now working on a
tensor product of three Hilbert space HR ⊗HS ⊗HT and enable us to keep track
of states on the various subspaces.

As discussed in Sec. 9.5.4, this identity implies that when two parties share an
entangled pair of states, the information encoded in a third qubit can be transmitted

∗The first explicit discussion of EPR correlations in spin systems appeared in Bohm’s21 1951 book
on quantum theory. Curiously, the first experiment of this type had been performed earlier (in 1949)
by Wu and Shaknov155 for a somewhat different purpose, following a 1946 proposal by Wheeler.153

The analysis of EPR correlations in the Wu-Shaknov experiment was given by Bohm and Aharanov22

in 1957. As far as I am aware, the original EPR experiment has not been done. However, a similar ex-
periment (i.e., one that uses the continuous variables of position and momentum), that was proposed
by Popper, has now been performed by Kim and Shih.78
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using a pair of classical bits. It is is straightforward, but tedious, to verify Eq. (9.37)
by simply writing out all terms on both sides. The following proof (which the
reader may prefer to postpone until after seeing its application in Sec. 9.5.4) may
gave more insight.

The Bell states form an orthonormal basis on C2 ⊗ C2 so that any vector |χ〉
can be expanded in the form

|χ〉 =
3∑

k=0

ck|βk〉, (9.38)

with ck = 〈βk, χ〉. We can generalize this to an expansion of the form

| 〉RST =
3∑

k=0

|βk〉RS ⊗ |γk〉T , (9.39)

with

|γk〉T = 〈βk,  〉RS, (9.40)

where the inner product is taken only over the subspace HR⊗HS , yielding a vector
|γk〉 on HT rather than a constant ck . We now apply this to | 〉RST = |φ〉R ⊗
|β0〉ST . Then

|γk〉T = 〈βk, φ ⊗ β0〉RS = 〈(σk ⊗ I )RSβ0, φ ⊗ β0〉RS (9.41)

= 〈β0, σkφ ⊗ β0〉RS (9.42)

= 1

4

(〈00|RS + 〈11|RS

)(
σk|φ〉R ⊗ |00〉ST + σk|φ〉R ⊗ |11〉ST

)
(9.43)

= 〈0, σkφ〉R|0〉T + 〈1, σkφ〉R|1〉T (9.44)

= 〈0, σkφ〉T |0〉T + 〈1, σkφ〉T |1〉T (9.45)

= (|0〉〈0| + |1〉〈1|)σk|φ〉T = σk|φ〉T , (9.46)

where Eqs. (9.44) and (9.45) exploit the fact that the value of an inner product is
the same in HT and HR since both are equal to C2.

9.3.5 More on entanglement

Most states on C2n
are neither product states nor maximally entangled. A pure state

is said to be entangled if it cannot be written as a product in any basis. Thus, one
has a continuum of possible degrees of entanglement.

If one takes a superposition of entangled states it need not become more en-
tangled. Indeed, 2−1/2(|β0〉 + |β3〉)= |00〉 is easily seen to yield a product. With a
bit more effort, one can see that 2−1/2(|β0〉− |β1〉)= |0〉x ⊗ |1〉x is also a product.
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However, 2−1/2(|β0〉 + i|β1〉) cannot be written as a product; indeed, it is max-
imally entangled. What does this mean? How does one know if a state can be
written as a product in some basis? More generally, given a superposition such as
3
5 |00〉 + 4

5 |00〉 or (
√

3/2)|β0〉 + 1
2 |β3〉, can one quantify the extent to which it is

entangled?
In the case of pure states, there is a very simple criterion for answering this

question. The entanglement of a pure state |ψ〉 on the space HA ⊗HB is the von
Neumann entropy of its reduced density matrix, i.e.,

S(TrB |ψAB〉〈ψAB|)=−TrB |ψAB〉〈ψAB| log(TrB |ψAB〉〈ψAB|). (9.47)

There is no ambiguity in this definition because the entropies of the two reduced
density matrixes ρA = TrB |ψAB〉〈ψAB |) and ρB = TrA|ψAB〉〈ψAB|) are equal. In
fact, ρA and ρB have the same nonzero eigenvalues. However, this is only true for
pure states. It is a direct consequence of the so-called “Schmidt decomposition,”
which states that any bipartite pure state can be written in the form

|ψAB〉 =
∑

k

µk|φk〉 ⊗ |χk〉, (9.48)

with {φk} and {χk} orthogonal. This result, which plays an important role in QIP, is
really just a special case of the singular value decomposition, as discussed in Ap-
pendix 9.C. (See also Appendix A of Ref. 80.) Moreover, it follows from Eq. (9.48)
that the nonzero eigenvalues of both ρA and ρB are given by |µk|2 so that the en-
tanglement of |ψAB〉 is −∑

k |µk|2 log |µk|2.
The preceding discussion applies to any bipartite composite system, i.e., in any

situation for which one can write the underlying Hilbert space as H=HA ⊗HB .
However, it can not be extended to multipartite states, e.g., HA ⊗HB ⊗HC . On
the other hand, it does apply to n-qubit systems in situations in which the qubits
can be divided into two sets, one with k qubits and the other with n− k using the
isomorphism between C2n

and C2k ⊗C2n−k
.

The question of measuring the entanglement of bipartite mixed states is quite
complex; and, in general, the entropy of one of the reduced density matrixes does
not suffice. To see why, observe that one can construct a density matrix that is a
convex combination of (nonorthogonal) products, but whose eigenvectors are not
product states. Neither reduced density matrix will have entropy zero, although
this state is not entangled in the sense that one has a mixture of products. There are
several inequivalent definitions of entanglement for mixed states, corresponding to
different physical situations. See Refs. 17, 26, 67 for a summary.

The classification of multipartite entanglement, even for pure states, is far from
straightforward and seems to require a large number of invariants. However, a few
special classes are worth a brief mention. A state of the form

1√
2

(|00 . . .0〉 + |11 . . .1〉) (9.49)

Downloaded from SPIE Digital Library on 18 Jun 2012 to 58.97.130.72. Terms of Use:  http://spiedl.org/terms



420 Mary Beth Ruskai

is known as a GHZ or “cat” state. It is sometimes regarded as highly entangled
because there is a sense in which all the particles are entangled with one another.
However, the measurement of σz on a single qubit would destroy the entanglement,
leaving the system in a product state. Recently, n-qubit states known as “cluster
states” were found,25 which are characterized by persistent entanglement in the
sense that a minimum of n

2 single-qubit measurements are required before all en-
tanglement is destroyed. Such states occur naturally in spin lattice models, such as
the Ising model, and play an essential role in the Raussendorf–Briegel model on
one-way computation.117,118 They were recently shown126 to be related to the sta-
bilizer groups (mentioned in Sec. 9.6.4), which arise in quantum error correction.

The classification and quantification of entanglement is an active area of current
research well beyond the scope of this chapter.

9.4 Quantum computation algorithms

9.4.1 The Deutsch–Jozsa problem

In the simple 2-qubit version of the Deutsch–Jozsa problem,34,35 one has a function
f : {0, 1} $→ {0, 1} and an associated unitary operator Uf whose action on a basis
of product vectors |j, k〉 is given by

Uf |j, k〉 = |j, k + f (j)〉, (9.50)

with addition mod 2. There are four possible functions; however, we are only in-
terested in learning whether f is one of the two constant functions, or one of the
other two, known as “balanced.” We do not give details of the operator Uf ; it is
assumed that it can be carried out by what is known as an “oracle.”

We first consider the effect of Uf on a product when the second vector has the
form H |1〉 = 2−1/2(|0〉 − |1〉). Then,

Uf

(
|j〉 ⊗H |1〉

)
= 1√

2
Uf |j, 0〉 −Uf |j, 1〉 (9.51a)

= 1√
2
|j, f (j)〉 − |j, 1⊕ f (j)〉

= 1√
2

{ |j, 0〉 − |j, 1〉 if f (j)= 0
|j, 1〉 − |j, 0〉 if f (j)= 1

= (−1)f (j) 1√
2

(|j, 0〉 − |j, 1〉) (9.51b)

= (−1)f (j)|j〉 ⊗H |1〉. (9.51c)

Thus, the effect of Uf on this special product is simply to multiply by a phase
factor (−1)f (j). Although overall phase factors are not physically observable, the
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action of Uf is not restricted to products and the phase factor becomes extremely
significant when Uf acts on a superposition.

Note that no special properties of |j〉 have been used; what is important is only
that the range of f is {0, 1}. We could replace |j〉 by a multiqubit state |J 〉 =
|j1j2 . . . jn〉 as long as the function f : J $→ {0, 1} has range {0, 1}.

Now consider the effect of Uf on the product state

(H ⊗H )|0, 1〉 = 1

2
(|0〉 + |1〉)⊗ (|0〉 − |1〉). (9.52)

It is not necessary to explicitly consider the effect of Uf on all four products.
Since

Uf (H ⊗H )|0, 1〉 = 1√
2

(Uf |0〉 ⊗H |1〉 +Uf |1〉H |1〉) (9.53a)

= 1√
2

((−1)f (0)|0〉 ⊗H |1〉 + (−1)f (1)|1〉 ⊗H |1〉

=


(−1)f (0)

1√
2

(|0〉 + |1〉)⊗H |1〉 if f (0)= f (1)

(−1)f (0)
1√
2

(|0〉 − |1〉)⊗H |1〉 if f (0) 	= f (1)

=
{

(−1)f (0)(H ⊗H )|0, 1〉 if f (0)= f (1)

(−1)f (0)(H ⊗H )|1, 1〉 if f (0) 	= f (1)
. (9.53b)

Thus, a measurement on the first qubit suffices to distinguish the two cases. One
can summarize the algorithm as follows:

1. With the QC initialized in the state |00〉, act with I ⊗ σx to convert it to the
state |01〉.

2. Act on both bits with the Hadamard transform H ⊗H .
3. Effectively evaluate the function in parallel with a single call to the “oracle”

by acting with the unitary operator Uf .
4. Apply the Hadamard transform to both bits of the result. This leaves the QC

in the state

{
(−1)f (0)|0, 1〉 if f (0)= f (1)

(−1)f (0)|1, 1〉 if f (0) 	= f (1)
.

5. Make a measurement to determine if the first bit is 0 or 1.

Thus, a quantum computation can distinguish between the two types of func-
tions with only one application of Uf , while a classical algorithm requires two-
function evaluations. Although this may seem a rather small advantage in an ar-
tificial problem, it does establish that there is something that a QC can do more
efficiently. Extensions and modifications of the Deutsch–Jozsa problem have been
considered and used to provide additional demonstrations of the potential power
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of quantum computation. (See, e.g, Bernstein and Vazirani.20) More recently,
Nathanson104 showed that the Deutsch–Jozsa algorithm could be adapted to solve
a problem that arises in models of the Internet.

9.4.2 Grover’s algorithm

9.4.2.1 Introduction

Grover’s algorithm52,53 performs an unsorted search for a target state |JT 〉. It ad-
dresses the measurement question head-on by constructing an operation whose ac-
tion incrementally increases the amplitude of the coefficient of the target state |JT 〉
in a superposition

∑
J aJ |J 〉. This operation is performed until the QC is in a state

with |aJT
|2 > 1

2 so that a measurement has more than a 50% chance of identifying
the target state.

For the purpose of explaining the algorithm, we assume the QC is initially in a
superposition of the form

| 〉 = 1√
M

∑
J∈S

|J 〉, (9.54)

where S is a subset of the binary n-tuples with M ≤ 2n elements. We might inter-
pret the state |J 〉 = |j1j2 . . . jn〉 as representing (or encoding)

1. A tag, such as a license plate or phone number, in m bits and the associated
name in the remaining n−m, or

2. A candidate solution to a problem, such as factoring, whose validity can
easily be checked.

9.4.2.2 The Grover oracle

We assume that an efficient process for determining whether J satisfies the requi-
site condition can be constructed; that this process yields an output f (J ), which
is 1 or 0, depending on whether the condition is satisfied; and that the QC has an
additional register bit whose state is changed from |k〉 to |k⊕f (J )〉. The net result
of this process is called the Grover oracle, G, and its action is equivalent to the
unitary operation

G(|J 〉 ⊗H |1〉)= (−1)f (J )|J 〉 ⊗H |1〉. (9.55)

The analysis showing that G has this effect on states of the form |J 〉⊗H |1〉 is vir-
tually identical to that used in Eq. (9.51) for the Deutsch–Jozsa algorithm. Because
the register bit does not play an explicit role in what follows, it will be omitted.
Now, (−1)f (J ) =−1 if and only if J is the target state. Therefore, when G acts on
a superposition,

G
∑

J

aJ |J 〉 =
∑

J

(−1)f (J )aJ |J 〉, (9.56)
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its effect is to mark the target state by changing the sign of its coefficient so that
aJT
$→ −aJT

. Thus G can be written as G = I − 2|JT 〉〈JT |. However, it is not
necessary to know JT in advance to construct G. Nor is it necessary to check each
J individually. If a sequence of unitary operations (as described) yields Eq. (9.55)
on a set of basis vectors, then the same operations on an arbitrary superposition
have the effect of Eq. (9.56).

9.4.2.3 The algorithm

For any vector |φ〉, Uφ ≡ I − 2|φ〉〈φ| is the unitary operator that multiplies |φ〉 by
−1 and acts like the identity on its orthogonal complement. Geometrically, this cor-
responds to reflecting an arbitrary vector across the hyperplane orthogonal to |φ〉.
Grover’s algorithm uses the repeated application of the product U ⊥G=−U G,
with  given by Eq. (9.54). Since this is a product of two reflections, the result
is a rotation. Thus, we can restrict attention to the plane orthogonal to the rotation
axis. This is spanned by |JT 〉 and | 〉 (and the vector | ⊥〉 is uniquely defined by
taking the orthogonal complement in this subspace).

We now write

| 〉 = 1√
M
|JT 〉 +

√
M − 1

M
|J⊥T 〉, (9.57)

where |J⊥T 〉 = 1√
M−1

∑
J 	=JT

|J 〉, and note that

−U = 2| 〉〈 | − I = I − 2(I − | 〉〈 |)= I − 2| ⊥〉〈 ⊥| =U ⊥ . (9.58)

Thus, the actions of −U = 2| 〉〈 | − I and G can then be described as re-
flections across | 〉 and |J⊥T 〉, respectively, as shown in Fig. 9.7. Let θ denote
the angle between | 〉 and |J⊥T 〉. Then the net effect of the composite operation
−U G = U ⊥G is a rotation in the plane by an angle 2θ . Thus, L applications
take

| 〉 $→ (−U G)L| 〉 = cos(2Lθ)|JT 〉 + sin(2Lθ)|J⊥T 〉. (9.59)

When π
4 < 2Lθ < 3π

4 , a measurement would yield JT with probability greater
than 1

2 . It follows from Eq. (9.57) that θ = tan−1(1/
√

M − 1) ≈ 1/
√

M so that
L≈ 3π

8
√

M
applications of −U G suffice.

9.4.2.4 Caveats

Preparing a superposition of the form of Eq. (9.54), which incorporates the cor-
relations between tags and names, requires considerable resources, defeating the
purpose of the algorithm. Therefore, the algorithm is used in a somewhat different
manner. We chose the description in Sec. 9.4.2.1 because it is easy to envision a
sequence of unitary operations that have the desired effect.
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In practice, one expects to begin with the QC in the state |00 . . .0〉 and act on it
with the Hadamard transform H⊗n to obtain the evenly weighted superposition

 =
∑

J=j1j2...jn

|J 〉 =
2n−1∑
J=0

|J 〉 (9.60)

of all states in the computational basis. For applications of type 2, the only effect is
to change the size of the set from M to 2n. For applications of type 1, we would now
have all possible names associated with every tag, which would be quite useless.
Instead, we assume that J now denotes only the name and not the tag. Identification
requires a more complex oracle process. The tag is stored in an m-qubit register,
and the correlated list of tags and names read into another register, as shown in
Fig. 9.8. The action of the oracle is now to output 1 if (and only if) the tags match
and the effect is to multiply the coefficient of the corresponding name (encoded
in the state |J 〉) by −1. It might appear that implementing such an oracle would
require that the list be stored in a quantum state of the form of Eq. (9.56). However,
it turns out that this oracle process can be implemented using a classical memory
for the list, provided that a quantum addressing procedure is available.

For a discussion of how this might be done, see Sec. 6.5 of Ref. 107. The
complexity of the oracle process does raise questions about the practicality of the
Grover algorithm for actually performing searches. It may be more useful for ap-
plications of type 2.

Figure 9.7 Grover diagram.

name tag tag-k name-k
n m m+ n

Figure 9.8 Register structure for Grover search.
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9.4.3 Period finding via the QFT

9.4.3.1 Introduction

Shor131,132 gave an algorithm for factoring large numbers by reducing this problem
to one of finding the period of a function. Since then quantum algorithms for other
number theoretic problems have been found by reducing them to period finding.
Some, most notably Hallgren’s algorithm54 for solving what is known as Pell’s
equations, require extending Shor’s result to functions with an irrational period.55

Because quantum computation plays a role only in the period-finding part of these
algorithms, we focus on that and omit number theoretic considerations.

From the standpoint of computational complexity, neither Shor’s algorithm nor
the related number theory problems prove that a QC can solve a problem expo-
nentially faster than a classical one, because it has not been demonstrated that any
of these problems require exponential time on a classical computer. However, the
ability of a QC to provide exponential speed-up was shown earlier by Simon139 for
the closely related problem of period finding for a function f : Zn

2 $→ Zn
2. Indeed,

the structure of Simon’s and Shor’s algorithms are virtually identical except for the
interpretation of a binary n-tuple as the binary representation of an integer in the
latter.

The brief presentation that follows draws heavily on that in Jozsa’s review73 to
which the reader is referred for more details. Indeed, this review is highly recom-
mended for its progressive treatment that begins with the Deutsch–Jozsa algorithm,
builds on it to explain Simon’s and Shor’s algorithms, and explains how the last two
fit into the common framework of the Abelian hidden subgroup problem. Jozsa re-
cently wrote another article74 on Hallgren’s algorithm, and the extension of Shor’s
algorithm to functions over R with an irrational period.

9.4.3.2 Shor’s algorithm

Now let N = 2n�M and suppose that we have a function f : ZN $→ ZM such
that f (x + r)= f (x). [An example of such a function is f (x)= yx mod M with
y < M and coprime to M . In this case, r is the smallest integer for which yr =
1 mod M .] For simplicity, we also assume that N is a multiple of r . Now suppose
that 2m−1 ≤M < 2m and define the following operator on C2n ⊗C2m

Uf : |J 〉 ⊗ |K〉 $→ |J 〉 ⊗ |K + f (J )〉, (9.61)

where |J 〉 = |j1j2 . . . jn〉; |K〉 = |k1k2 . . . km〉; addition is mod M ; and J and K

are interpreted as integers in ZN and ZM , respectively.
If this operator is applied to a QC in the state H⊗n|0〉 ⊗ |0〉,

Uf :H⊗n|0〉 ⊗ |0〉 = 2−n/2
∑

J

|J 〉 ⊗ |0〉 $→ 2−n/2
∑

J

|J 〉 ⊗ |f (J )〉. (9.62)

If one then makes a measurement on the last m qubits, the process essentially
selects a state |K〉 in the last m bits and leaves the computer in a state that is a
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superposition corresponding to all integers J mapped to K , i.e., those for which
f (J )=K . The QC is then in the state

∑
J :f (J )=K

|J 〉 ⊗ |K〉 =
∑

λ

|x + λr〉 ⊗ |f (x)〉. (9.63)

Unfortunately, a measurement on the first n bits in this state would simply select
one of the integers J = x + λr , which map to f (K), without revealing any infor-
mation about x, λ, or r . Because the QC is left in a state of the form |J 〉 ⊗ |K〉,
further measurements will give the same result. If one repeats the entire process,
one may get a different integer K ′. Then a measurement on the first n bits gives a
number of the form J ′ = x′ + λ′r . This provides no more information than a pair
of random integers in ZN .

To extract additional information, one applies the QFT, given by Eq. (9.76), to
the first n bits in Eq. (9.63) before doing the next measurement.

F
(∑

λ

|x + λr〉
)
⊗ |f (x)〉 =

∑
λ

∑
L

e(2πi)(x+λr)(L/N)|L〉 ⊗ |f (x)〉 (9.64)

= e(2πi) x
N

∑
L

{∑
λ

e[2π(L/µ)i]λ
}
|L〉 ⊗ |f (x)〉

= e(2πi)x/N
∑

t

|t µ〉 ⊗ |f (x)〉. (9.65)

The analysis above used the assumption N = rµ, but the key point is that

∑
λ

e[2π(L/µ)i]λ =
 0 if

L

µ
is not an integer

ν if L= tµ for some integer t

. (9.66)

Thus, the QFT changes the state of the QC from a superposition of states of the
form |x + λr〉, with x and r fixed, to a superposition of states of the form |tµ〉.
With the QC in the state of Eq. (9.65), a measurement on the first n bits yields a
multiple of µ.

Moreover, applying the QFT to the superposition of Eq. (9.63) always yields
the state

∑
t |tµ〉, i.e., the output is independent of x. A measurement on the first

n bits is now guaranteed to yield a multiple of µ. If the process is repeated, one
again obtains a multiple of µ. From this, one can eventually determine r = N

µ
. In

fact, it can be shown that O(n) repetitions suffice.
In general, it is not true that N = 2n = rµ. However, it can be shown that this

analysis is approximately correct when n > 2 log M .
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It is not actually necessary to perform the first measurement that generates
Eq. (9.63). It suffices to observe that∑

J

|J 〉 ⊗ |f (J )〉 =
∑

K

∑
J :f (J )=K

|J 〉 ⊗ |K〉, (9.67)

so that

F
∑

J

|J 〉 ⊗ |f (J )〉 =
(∑

t

|tµ〉
)
⊗

(∑
xK

e(2πi)(xk/N)|f (xK)〉
)

, (9.68)

where the notation reflects the fact that one can associate an x ≡ xK with each K

in the range of f .

9.4.3.3 Abelian hidden subgroup problem

A group theoretic interpretation of Shor’s algorithm has led to similar algorithms
for other problems in algebra and number theory. For a given f with period r the
set

Sf = {J : f (J )= f (0)} = {λr : λ ∈ Z} (9.69)

is a subgroup of ZN , the integers mod N , whose cosets have the form

SK = {J : f (J )=K} = {xK + λr : λ ∈ Z}. (9.70)

Thus, the two sums in Eq. (9.67) can be interpreted as a sum over cosets, and a
sum of elements within the coset, respectively; and Eq. (9.65) implies that the QFT
acting on an evenly weighted superposition of elements in a coset is independent
of the coset. Indeed, with µ= 1

r
, the set {tµ : t ∈ Z} can be interpreted as the factor

group G
Sf

. Finding the period of f is equivalent to determining the subgroup Sf .
After the QFT has been applied, a measurement on the QC yields an element of the
factor group G

Sf
. This is repeated until enough elements of G

Sf
are known to enable

one to determine Sf .
Shor’s procedure can be extended to other instances of the Abelian hidden sub-

group problem with the QFT replaced by an unitary map equivalent to the Fourier
transform on groups. See Refs. 73 and 107 for more information.

One can summarize the Abelian hidden subgroup algorithm as follows:

1. Initialize the computer in the state |0 . . .0〉⊗ |0 . . .0〉 where the first product
has n bits and the second m.

2. Apply the Hadamard transform to the first n bits to put the QC in the state
H⊗n|0〉 ⊗ |0〉 = 2−n/2 ∑

J |J 〉 ⊗ |0〉.
3. Apply a unitary operator associated with the subgroup S to convert the QC

to a state of the form (2−n/2 ∑
J |J 〉)⊗ |f (J )〉.
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4. Convert the QC to a state in which the first n bits have the form∑
J∈S |K0 + J 〉. [This can be done either by a measurement on the last

m bits, or by rewriting, as in Eq. (9.70). In the latter case, the QC is actually
in a superposition of states of the desired from.]

5. Apply a suitable quantum Fourier transform to change the state of the first
n qubits to the form

∑
K∈G/S |K〉.

6. Make a measurement in the computational basis to identify an element of G
S

.
7. Repeat the entire process until one has enough elements to identify G

S
.

9.4.3.4 Simon’s algorithm

We now illustrate the group theoretic view by describing Simon’s algorithm as a
special case. In this case, the n-qubit state |j1j2 . . . jn〉 is interpreted as an element
of Zn

2 ≡ Z⊗n
2 rather than as an element of Z2n

. Then f : Zn
2 $→ Zn

2 is a 2 : 1 function
and the period (u1u2 . . . un) is an element of Zn

2, i.e.,

f [(j1j2 . . . jn)⊕ (u1u2 . . . un)] = f (j1j2 . . . jn), (9.71)

where ⊕ denotes pointwise binary addition. The subgroup

Sf = {(0 0 . . .0), (u1u2 . . . un)} (9.72)

has two elements, and its cosets have the form

{(j1j2 . . . jn), (j1j2 . . . jn)⊕ (u1u2 . . . un)}. (9.73)

The Hadamard transform H⊗n now plays the role of the QFT. When applied to a
superposition corresponding to elements in the set (9.73), it yields

∑
u⊥
|k1k2 . . . kn〉, (9.74)

where, in this case, the factor group G/Sf is the orthogonal complement of
(u1u2 . . . un) as a vector in Zn

2, i.e.,

u⊥ =
{

(j1j2 . . . jn) : (j1j2 . . . jn) · (u1u2 . . . un)=
∑

i

jiui = 0 mod 2
}

. (9.75)

Then, making a measurement yields an element of u⊥. If one repeats this process
[which typically takes O(n2) times] until one has n− 1 linearly independent vec-
tors in u⊥, one has sufficient information to find u.
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9.4.4 Implementing the quantum Fourier transform

The QFT can be defined on basis vectors as F |K〉 =∑
J eJ K(2πi)/2n|J 〉. It follows

that for an arbitrary vector of the form
∑

K xK |K〉

F
(∑

K

xK |K〉
)
=

∑
J

(Fx)J |J 〉, (9.76)

where (Fx)J =∑
K eJ K(2πi)/2n

xK denotes the usual DFT on a vector xK of length
N = 2n.

The key to implementing both the QFT and the FFT is the identity∑
k1...kn

e2πi[(j12n−1+···+2jn−1+jn)(k12n−1+···+2kn−1+kn)]/2n|k1 . . . kn〉 (9.77)

= [|0〉 + e0.jn(2πi)|1〉][|0〉 + e0.jn−1jn(2πi)|1〉] . . . [|0〉 + e(2πi)0.j1j2...jn |1〉],

where

0.jkjk+1 . . . jn = jk2−1+ jk+12−2+ · · · + jn2−n+k−1 (9.78)

= 2n−1jk + 2n−2jk+1 + · · · + jn

2n
.

We first consider implementing the action

|j1j2 . . . jm〉 $→ |0〉 + e0.j1j2...jm(2πi)|1〉, (9.79)

which can be done using the Hadamard transform and the controlled phase gate
Qj , which takes

|0〉 ⊗ |j〉 $→ 1√
2

(|0〉 + |1〉)⊗ |j〉 (9.80a)

|1〉 ⊗ |j〉 $→ 1√
2

(|0〉 + e2πi/2j |1〉)⊗ |j〉. (9.80b)

One can then verify that

H ⊗ I m−1|j1j2 . . . jm〉 = 1√
2
[|0〉 + e(2πi)0.j1|1〉] ⊗ |j2 . . . jm〉 (9.81a)

Q2H ⊗ I m−1|j1j2 . . . jm〉 =Q2
1√
2
[|0〉 + e(2πi)0.j1|1〉] ⊗ |j2 . . . jm〉 (9.81b)

= 1√
2
[|0〉 + e(2πi)0.j1j2|1〉] ⊗ |j2 . . . jm〉 (9.81c)
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Qm . . . Q2H ⊗ I m−1|j1j2 . . . jm〉
= 1√

2
(|0〉 + e(2πi)0.j1j2...jm |1〉)⊗ |j2 . . . jm〉, (9.81d)

where it is understood that Qj acts on the first bit (the control bit) and the j th bit.
Similarly,

Qm . . . Q3H ⊗ I m−2|j2 . . . jm〉 = 1√
2
[|0〉+ e(2πi)0.j2...jm |1〉]⊗ |j3 . . . jm〉, (9.82)

where the second bit is now the control bit. Thus, the QFT can be implemented
by first using swapping operations to convert |j1j2 . . . jn〉 $→ |jnjn−1 . . . j1〉 and
then applying the process above to the first m bits with m = 1 . . .n. Each factor
in Eq. (9.77) requires m gates, one Hadamard, and m− 1 controlled phase gates.
Therefore, the QFT can be implemented using a total of

∑n
m=1 m = n(n+1)

2 gates
plus n

2 swap gates, which yields O(n2) or O(log N)2 operations.
Although it may appear that the QFT requires O(log N)2 steps for the part

of the classical FFT, which requires O(log N), the usual estimates for the FFT
requires O(N log N), and hides the fact that the number of operations also de-
pends on the accuracy. If d is the number of binary digits, one could say it re-
quires O(d log N) operations. In the period-finding algorithms to which the QFT
is applied, d is not constant, but O(log N). Thus the net result O(log N)2 can be
interpreted as O(d log N), consistent with the classical FFT.

9.5 Other types of quantum information processing

9.5.1 Quantum key distribution

In QKD, one uses quantum particles to generate a secret code in the form of a string
of 0s and 1s that can then be used as a classical one-time key pad. One approach39

could be described using a variant of the EPR experiment in Sec. 9.3.2. In this
setup, the two parties (traditionally known as Alice and Bob, but here called Sue
and Tom to avoid confusion with the box labels) exchange e-mail telling which
box A, B, or C each clicked on. They then discard all data for which they clicked
on different boxes, and use the data from the remaining times. Because they retain
only data from times when they chose the same box, their results are perfectly
correlated. They can then apply an agreed upon procedure (e.g., Sue’s W-L record
corresponds to 0, 1 and Tom’s to 1, 0) to their data to obtain a classical binary
string. Even if their e-mail is intercepted, the eavesdropper (traditionally known
as Eve, but here called Irv) only learns which boxes they chose; not whether they
obtained a W or L.

It is not, however, at all necessary to use pairs of entangled particles for QKD.
Several single-qubit protocols exist, and experiments based on them have given im-
pressive results. We describe two of these before discussing some of the additional
ingredients needed for security in both procedures.
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Table 9.3 B92.

Encoding Probabilities

0 1
Sue ↑ ↗
Tom ↖ →

Tom\Sue 0 1
0 1

2 0
1 0 1

2

In the B92 protocol,12 Sue uses polarized photons to encode 0 and 1 as in
Eq. (9.7a), while Tom measures the polarization using the encoding in Eq. (9.7b).
The left part of Table 9.3 summarizes the encoding scheme; the right part the prob-
ability that Tom gets a signal when Sue sends as indicated in the top row and Tom
measures as in the left column. If Sue sends a random string of 0s and 1s and Tom
measures randomly, he can expect to get a signal about 25% of the time. What is
certain is that he can never get a signal when Sue sends a 0 and he measures a 1
in their respective encodings. Thus, Tom receives a signal only when he and Sue
both choose 0 or both choose 1. Tom then uses a public channel to tell Sue which
measurements yielded signals. They retain the data corresponding to those mea-
surements and discard the rest. Assuming that they have an accurate mechanism
for labeling and recording their data, this yields a suitable secret key. An eaves-
dropper on the public channel can learn which signals are being used, but only Sue
knows what was sent and Tom what was measured.

In the BB84 protocol,13 orthogonal bases are used, but Sue randomly chooses
between the bases Eqs. (9.1) and (9.3). Tom also randomly chooses between these
same bases when making measurements. After publicly exchanging information
about which bases they used, they retain the data from times in which they chose
the same basis and discard the rest.

Security in the BB84 and B92 protocols requires some additional ingredients.
First, one must suppose that they start with a short shared private key that can be
used to authenticate any messages they exchange (e.g., to preclude an imperson-
ator). Thus, these are more correctly termed procedures for “privacy amplification”
rather than key distribution.

Next, they must check for the presence of an eavesdropper. For this, it is impor-
tant that nonorthogonal states were involved. Suppose that BB84 is used. Irv can
measure the signal, but does not know which basis Sue used. Therefore, Irv cannot
reliably transmit the signal to Tom in the same basis. This will introduce errors into
the supposedly perfectly correlated results when Sue and Tom use the same bases.
Now if Sue and Tom sacrifice part of their shared key to perform an error detection
procedure, they will be able to learn if significant eavesdropping has occurred.

Actually proving that these protocols can be used for what is called “uncon-
ditional security” in an idealized setting is not at all trivial. Nevertheless, this has
been done for the BB84 and, more recently, the B92 protocol. Although the first ar-
guments were rather complex, Shor and Preskill137 used ideas from quantum error
correction to give a simple argument for BB84, which has since been generalized.
(Unconditional security does not mean absolute in the sense that no information
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can be obtained by an eavesdropper. It means that acceptable bounds on the eaves-
dropper’s information assume that the adversary has access to any device permitted
by physical principles, whether or not such devices have been built.)

It is an indication of how successful experiments on QKD have been that much
current research is now concerned with imperfections in the experiments. In ad-
dition to efforts to minimize these, analyzing the impact on security of imperfect
scenarios is an extremely active area of research. Recently, some proofs of uncon-
ditional security have been extended to nonideal settings.51,70

A number of experimental groups have now demonstrated the feasibility of
QKD in various circumstances. For example, Hughes et al.69 have demonstrated
single photon protocol QKD in free space in daylight over 10 km under conditions
that indicate that free-space QKD will be practical over much longer ranges. In
particular, their work suggests that ground-to-satellite implementation of QKD are
quite promising. For a detailed survey of both theory and experiment through 2001,
see Ref. 44. More recently, several groups have described QKD protocols that use
continuous variables. See Ref. 138 for a brief discussion and references to earlier
work.

9.5.2 Quantum cryptography

QIP has the potential to provide both new methods for breaking codes and new
methods of protecting data. For example, Shor’s algorithm for factoring large num-
bers is a potential threat to the security of the RSA (Rivest, Shamir, Adelman)
system currently in use. On the other hand, QKD provides new methods for gen-
erating secure one-time keypads. Although quantum information processors are
potentially more powerful than classical ones, quantum cryptographic procedures
are neither more nor less powerful than classical ones. Quantum theory offers new
methods for breaking codes, eavesdropping, and interfering with messages, as well
as new methods of encryption. The study of new cryptographic protocols is an ac-
tive area of research for which we briefly mention only a few examples.

The first proposals for quantum cryptography, including a procedure for money
that could not be counterfeit, seem to have been made by Wiesner about 1970, in
work that was not published. Its eventual publication151 in 1983 was facilitated
by Bennett, whose appreciation for these ideas led to the first QKD proposal with
Brassard.13

The next area to be actively explored was quantum bit commitment. In this
process, Sue (one of two mutually untrusting parties) encodes information in a
qubit that is sent to the other party, Tom, but cannot be read by him. When the bit
is subsequently revealed to Tom, Sue is also required to prove that it has not been
tampered with. Early in the development of QIP, a number of quantum bit commit-
ment schemes were proposed. However, in 1997 it was shown by Mayers100 that
unconditionally secure quantum bit commitment is impossible. (See also, the inde-
pendent proof in Ref. 96, and Ref. 23 for an overview.) Using ideas first proposed
by Crépeau and Kilian,33 some progress has been made on procedures for secure
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quantum bit commitment in the presence of noise.152 Since cheating in quantum bit
commitment generally exploits entanglement, and sufficient noise can be shown to
break entanglement, it is not unexpected that noise can be used to enhance quantum
cryptography.

Secret sharing is a method for distributing information among M parties so that
no unauthorized subgroup (typically, M−1 of them) can use it. In a variant known
as data hiding, M − 1 parties cannot use the information even if classical com-
munication among them is permitted. There is now extensive literature on various
quantum protocols for secret sharing and related topics, such as secure distributed
computing. See, e.g., Refs. 32, 37, and 49.

Another area with considerable practical interest is the development of quan-
tum methods for authentication50 or “digital signatures.” It was shown in Ref. 6
that any scheme to authenticate quantum messages must also encrypt them. (In
contrast, one can authenticate a classical message while leaving it publicly read-
able.)

QIT also offers the possibility of cryptographic methods that have no classi-
cal counterpart. For example, Gottesman49 proposed using quantum particles to
encrypt classical data, after which it could not be cloned.

In addition to generating new quantum methods for cryptography, QIT has also
given new insights into classical procedures. Recently, Kerenidis and de Wolf77

even used quantum methods to prove something new about classical codes. They
use a quantum argument to show that what are known as locally decodable codes
(i.e., codes from which information can be extracted from small pieces) must be ex-
ponentially long when only two classical queries are permitted. Their argument is
based on an equivalence between two classical bits and one quantum bit in certain
contexts. This equivalence also plays a role in Secs. 9.5.3 and 9.5.4.

9.5.3 Dense coding

We describe this process using a fictitious scenario in which Sue is spying behind
enemy lines and wants to let Tom know the direction from which to expect the
next attack—N, S, E, or W. Two classical bits would be needed to transmit this
information. Now Sue wants to minimize the number of signals she transmits to
avoid detection. Moreover, Sue and Tom share a pair of photons in an entangled
Bell state, say |β0〉, and have agreed on a correspondence between the four Bell
states and the four directions N, S, E, and W. When Sue wants to send information,
she applies one of I, σx, σy , or σz to her photon. Sue’s operation converts the state
of the entangled pair to |βk〉, as in Eq. (9.33). If Sue then sends her photon to Tom,
he will have a pair of entangled photons on which he can make a Bell measurement
to learn the direction of the attack.

Sue has used a single qubit to encode and transmit information that would re-
quire two classical bits. This process is known as “dense coding.” It does not con-
tradict the Holevo bound on accessible information because Tom’s measurement
requires a pair of photons—one sent by Sue, and another that Tom has from the
start.

Downloaded from SPIE Digital Library on 18 Jun 2012 to 58.97.130.72. Terms of Use:  http://spiedl.org/terms



434 Mary Beth Ruskai

9.5.4 Quantum teleportation

Sue and Tom again share the entangled Bell state |β0〉. However, Sue now wants
to transmit the quantum information encoded in the state |φ〉R = a|0〉 + b|1〉 to
Tom. This process uses three particles, two, initially located in Sue’s lab, in the
Hilbert spaces HR and HS and another, in the Hilbert spaces HT , with Tom. The
full system is described by the Hilbert space HR ⊗HS ⊗HT and the initial state
of the system is |φ〉R ⊗ |β0〉ST , where subscripts indicate subsystems.

Sue and Tom now use the following procedure:

• Sue makes a Bell measurement (i.e., one that can distinguish between the
four states |βk〉 in Table 9.2) on the composite system HRS . By the identity
Eq. (9.37) this will leave the system in one of the four states |βk〉RS⊗σk|φ〉S
and Sue will learn the value of k.

• Sue uses a classical communication channel to transmit the value of k to
Tom. This requires the transmission of two classical bits to distinguish
among 0, 1, 2, and 3.

• Having learned k, Tom performs the operation σk on the qubit σk|φ〉S in his
possession, converting it to the state |φ〉S since σ 2

k = I .

The net result is that the information encoded in |φ〉 has been transmitted from
Sue to Tom, without actually sending the qubit |φ〉R . The information originally
encoded in a qubit in subspace HR is now encoded in a qubit in the subspace HT

which could, in principle, be quite far away. It should be emphasized that only
information has been teleported; not the physical qubits (or any form of matter).

Note that the state |φ〉 has not been cloned. Sue’s measurement destroys the
qubit |φ〉R before Tom has the information needed to construct |φ〉T . Moreover,
information is not transmitted instantaneously. Sue must communicate two classi-
cal bits that cannot reach Tom faster than the speed of light.

What application might there be for this procedure? The answer depends on
the various purposes for which quantum information might be used. Procedures,
such as the single-photon QKD protocols described in Sec. 9.5.1, require the trans-
mission of quantum information. However, quantum states are easily corrupted,
making faithful transmission over long distances difficult. One way to overcome
this is to use teleportation to construct “quantum repeaters”24 along classical chan-
nels.

What is important in both the physical protocol and the mathematical argument
is that the Hilbert spaces HS , HS , and HR are all isomorphic to C2. It is not nec-
essary to use identical particles. The procedure could, in principle, be applied with
R representing the spin of a proton, S, T the spin of electrons (or even a positron-
electron pair). In such a case, the information encoded in the spin of a proton would
be transferred to the spin of an electron. Although this might be experimentally∗

∗Although progress on achieving entanglement between an electron and a spin- 1
2 nucleus was re-

cently reported.101
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difficult, it does demonstrate that the procedure transmits only information, not
matter.

9.5.5 Quantum communication

Both quantum teleportation and dense coding are special cases of quantum com-
munication, i.e., the use of quantum particles to transmit information. In the former,
the information to be transmitted is quantum, i.e., one transmits the information en-
coded in the state of a qubit; in the latter, the information is classical and equivalent
to that encoded in two classical bits. In both cases, the communication is assisted
in the sense that a resource, a pair of shared entangled particles, is used in addition
to a communication channel. In fact, with the additional resource of a shared en-
tangled EPR pair, two parties can transmit either one qubit of quantum information
by sending two classical bits or two bits of classical information by sending one
qubit.

There are many other ways to use quantum particles to transmit both clas-
sical and quantum information, with and without additional resources, such as
shared entanglement or additional classical communication channels. Even proto-
cols whose practicality for the direct transmission of messages may seem doubtful
may have important applications within the full spectrum of QIP. In addition to
using teleportation as an ingredient in the construction of quantum repeaters, one
might use it to transfer information within a large QC.

It is natural to ask questions about quantum communication similar to those
raised by Shannon for classical communication. In the study of quantum informa-
tion, the concept of a typical sequence is replaced by that of a typical subspace,
which was introduced by Schumacher.127 Generalizations of Shannon’s so-called
“noiseless” coding theorem have been proved in a variety of circumstances. See,
e.g., Refs. 68, 76, and 127 and the discussion in Chapter 12 of Ref. 107.

One can also ask for the maximum rate at which a noisy quantum channel can
be used to transmit information. Because of the greater variety of protocols, the
theory of quantum channel capacity is much richer than its classical counterpart.
This topic requires notation introduced in Sec. 9.6.1, and also comes under the
general category of noise. Therefore, it is discussed in Sec. 9.6.2.

It is worth pointing out that entangled particles can be transmitted using a chan-
nel capable of sending only one particle at a time. As explained in Appendix 9.D.2,
the description of qubits we have been using is incomplete. Suppose one has an en-
tangled pair of particles in the Bell state

1√
2
[|f (x, t), 0〉 ⊗ |g(x, t), 1〉 + |f (x, t), 1〉 ⊗ |g(x, t), 0〉], (9.83)

where f (x, t) describes the (spatial) probability distribution at time t . For exam-
ple, a situation in which Sue initially has both particles occurs when both f (x, t0)

and g(x, t0) have support in Sue’s lab. Sending half of the entangled pair to Tom
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corresponds to a physical process that modifies f (x, t) until, at time t1, the func-
tion f (x, t1) has support in Tom’s lab. The second particle can then be sent (using
the same channel) by modifying g(x, t) so that g(x, t2) also has support in Tom’s
lab; thus, at time t2, Tom has the entire entangled pair. Alternatively, after the first
step, Tom could perform an action such as σk ⊗ I and then again modify f (x, t)

to send the particle back to Sue, who might then make a joint measurement as in
the dense coding protocol.

9.6 Dealing with noise

9.6.1 Accessible information

9.6.1.1 The Holevo bound

We now consider the question alluded to after Eq. (9.8). What is the maximum
amount of information that can be extracted from n qubits under ideal circum-
stances? Can a sufficiently clever encoding and measurement permit the extraction
of more information than could be encoded in n classical bits? To answer this
precisely, we must formalize the process of obtaining information from quantum
systems.

Let {ρi} denote the (possibly mixed) state of a quantum system in dimension
d , and let πj denote the probability that the system is in the state ρj . The average
state of the system is ρ =∑

j πj ρj and the set E = {πj , ρj } is referred to as an
ensemble. We are primarily interested in the case of n qubits for which d = 2n.

The most general type of measurement one can make is a POVM (defined at the
end of Sec. 9.2.2) of the form M= {Fb} with Fb > 0 and

∑
b Fb = I . The acces-

sible information associated with a given measurement and ensemble can then be
defined as the classical mutual information associated with the (discrete classical)
probability distribution p(j, b)= πj Tr ρj Fb, which can be written as

I (E, M)= S[TrρEb] −
∑

j

πj S[Trρj Eb], (9.84)

where we have used S[yb] to denote the entropy associated with a classical prob-
ability distribution with yb = Tr ρj Eb. The Holevo bound59 states that Eq. (9.84)
is bounded above by an analogous quantity involving the von Neumann entropy of
Eq. (9.16), i.e.,

I (E, M)≤ S(ρ)−
∑

j

πj S(ρj )≡ χ(πj , ρj ). (9.85)

Since 0≤ S(γ )≤ log d , it follows immediately from Eq. (9.85) that

I (E, M)≤ S(ρ)≤ log d = log 2n = n, (9.86)
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for n qubits. Thus, one can not obtain more information from n qubits than from n

classical bits.
The expression for the quantum mutual information in Eq. (9.85) is known as

the “Holevo χ quantity.” Equality can be attained in Eq. (9.85) if and only if all of
the ρj commute.59,109,123

9.6.1.2 Relative entropy and mutual information

The Holevo bound can be proved in a variety of ways. We use an approach based
on the quantum relative entropy, which is defined as

H (ρ, γ )≡ Trρ(log ρ − log γ ). (9.87)

One can show that H (ρ, γ )≥ 0 with equality if and only if ρ = γ . Although the
relative entropy is not a true distance, it is sometimes used as a measure of how
different two states are. One expects that noise should make two states harder to
distinguish so that

H ["(ρ), "(γ )] ≤H (ρ, γ ), (9.88)

where " is a CPT map, as discussed in Sec. 9.2.4. The inequality (9.88) is a deep
property known as the “monotonicity of of relative entropy,” and it is closely re-
lated to a property of quantum entropy known as strong subadditivity. The reader
is referred to Refs. 108, 123, and 147 for a proof and discussion of the properties
of entropy and relative entropy for quantum systems.

The mutual information in a mixed state ρAB on a tensor product space
HA⊗HB can be defined using the relative entropy as

H (ρAB, ρA⊗ ρB)=−S(ρAB)+ S(ρA)+ S(ρB), (9.89)

where ρA = TrB ρAB and ρB = TrA ρAB are the reduced density matrixes defined
via the partial trace. (See Appendix 9.B.) If we now identify HA with H and let
HB =Cm, we can formally associate the ensemble E with the mixed state

ρAB =
m∑

j=1

πj ρj ⊗ |j〉〈j | =


π1ρ1 0 . . . 0

0 π2ρ2 . . . 0
...

. . .
...

0 0 . . . πmρm

 . (9.90)

Moreover, ρA =∑
j πj ρj = ρ and ρB =∑m

j=1 πj |j〉〈j | is the diagonal matrix
with nonzero elements πj . Thus one finds
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H (ρAB, ρA ⊗ ρB)=
∑

j

Tr (πj ρj ) log(πj ρj )+ S(ρ)+ S[πj ] (9.91)

=
∑

j

πj Tr ρj log ρj +
∑

j

πj log πj + S(ρ)+ S[πj ]

= S(ρ)−
∑

j

πj S(ρj )= χ(πj , ρj ). (9.92)

9.6.1.3 Proof of Holevo bound

The proof of the Holevo bound requires one more ingredient, the recognition that
the result of a POVM can be expressed as a special case of a CPT map.62,123,156 For
the POVM M= {Fb}, with dM elements define the map "M : B(H) $→D(CdM)

by

"M(γ )=
∑

b

Tr (γ Fb)|b〉〈b|. (9.93)

Thus, "M maps the density matrix γ to the diagonal matrix with elements
δbcTr (γ Fb). It is a CPT map [which one can verify by observing that "M can
be written in the form of Eq. (9.23) with Akb = |b〉〈k√Fb|]; in fact, it is a spe-
cial type62 known as “quantum-classical,” since it maps mixed quantum states to
classical ones.

To prove the Holevo bound of Eq. (9.85), it suffices to observe that

I (E, M)= S[Tr ρEb] −
∑

j

πj S[Tr ρj Eb] (9.94)

=H [("M ⊗ I )(ρAB), ("M ⊗ I )(ρA ⊗ ρB)] (9.95)

≤H (ρAB, ρA ⊗ ρB) (9.96)

= S(ρ)−
∑

j

πj S(ρj )= χ(πj , ρj ). (9.97)

It is important that the representation of the measurement operation "M as a CPT
map is as a map on B(HA) or, equivalently, as a map of the form "M ⊗ IB on
B(HA⊗HB).

There is another way156 of using the monotonicity of relative entropy to prove
the Holevo bound. It uses the observation that

χ(πj , ρj )=
∑

j

πj H (ρj , ρ), (9.98)

from which it follows immediately that
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I (E, M)=
∑

j

πj H ["M(ρj ), "M(ρ)] (9.99)

≤
∑

j

πj H (ρj , ρ)= χ(πj , ρj ). (9.100)

Despite the brevity of this argument, we prefer the first because it demonstrates
the role of mutual information. On the other hand, the identity of Eq. (9.98) is
important because it leads to a very useful characterization109,130 of the optimal
inputs for noisy channels. For additional discussion of the properties of entropy
used in this argument, see Ref. 123. A proof based on the strong subadditivity
property of entropy was given in Ref. 128 and presented in Ref. 107.

9.6.2 Channel capacity

9.6.2.1 Background

We now briefly mention a few results concerning channel capacity in the case of
a memoryless channel. In this model, the noise associated with a single use of the
channel is given by the CPT map " that for n uses is simply the tensor product
"⊗n. This is a realistic model, even for entangled particles, assuming that they are
sent one at a time, as described at the end of Sec. 9.5.5. Shannon’s classical noisy
coding theorem says that the optimal asymptotic transmission rate for a memory-
less channel is given by a “one-shot” formula corresponding to a single use of the
channel. In QIP this is not always true. Indeed, one of the features of quantum com-
munication is the possibility of using entanglement to enhance communication.

9.6.2.2 Classical information

In the simplest type of communication, classical information is encoded in quan-
tum particles and a POVM made on the information received, with no additional
resources. With the input ensemble {π,ρj }, the maximum information that can be
obtained from a single use of the channel is the accessible information in the output
ensemble "(E)= {πj "(ρ)j } or

sup
M

I ("(E), M)= sup
M

(
S[Tr Eb"(ρ)] −

∑
j

πj S[Tr Eb"(ρj )]
)

. (9.101)

The asymptotic capacity is then

CEE(")≡ lim
n→∞

1

n
sup

EnMn

I ["⊗n(En), Mn], (9.102)

where the subscripts indicate that at the nth level in the supremum in Eq. (9.102),
the allowed ensemble En and POVM Mn in C2n

may include entangled states. Per-
haps surprising, a closed-form expression for Eq. (9.102) is not known; however, it
is known that Eq. (9.102) can be strictly greater than the supremum of Eq. (9.101)
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over all possible (one-shot) input ensembles. One can define capacities restricted
to product inputs CP E(") and/or product measurements CEP ("). It is known that

CEP (")= CP P (")= sup
E,M

I ["(E), M] (9.103)

≤ sup
E

{
S["(ρ)] −

∑
j

πj S["(ρj )]
}

(9.104)

= CP E(")≡ CHolv("). (9.105)

The first inequality is simply a special case of the Holevo bound in Eq. (9.85).
The fact that entangled inputs do not increase the capacity if only product mea-
surements are allowed, i.e., that CEP (") = CP P ("), was proved independently
by King and Ruskai81 and by Shor134 and is implicit in Ref. 62. The fact that
Eq. (9.104) can be achieved using product inputs and entangled measurements
is a deep result, first considered in Ref. 60 and proved independently by Schu-
macher and Westmoreland129 and by Holevo.61 Moreover, Holevo60,62 showed that
CHolv(") can be strictly greater than CP P ("), i.e., that entangled measurements
can increase the capacity of a memoryless channel.

What is still unresolved is whether using entangled input states can ever in-
crease the capacity. This is closely related to the question of whether strict inequal-
ity ever holds in

CHolv("⊗
)≥ CHolv("⊗
). (9.106)

If equality in Eq. (9.106) holds whenever 
 = "⊗k, then it would follow from
Eq. (9.102) that CEE(") = CHolv("). Although the question is still open (and
does not seem more difficult for general 
), additivity has been shown in many
special cases. Recently it was shown2,3,99,136 to be equivalent to similar questions
about the additivity of minimal entropy and other quantities characterizing the out-
put state "(ρ) closest to a pure state; and to properties of a quantity called the
“entanglement of formation.”

More is actually known about the so-called “entanglement-assisted capacity”
(EAC). This is the capacity of a memoryless channel when quantum particles are
used to transmit classical information, but the sender and receiver have access to
an unlimited amount of shared entanglement. As in the dense coding protocol,
one expects this to enhance the capacity and this is, indeed, the case.18,19,64 The
capacity is the supremum over mutual information in states of the form γ12 =
(I ⊗")(| 〉〈 |). Thus, the entanglement assisted capacity is given by

EAC(")= sup
 

H [γ12, γ1⊗ γ2]

= sup
ρ
{S["(ρ)] + S[ρ] − S[(I ⊗")(| 〉〈 |)]}, (9.107)
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with ρ = TrA| 〉〈 |. The state | 〉 is called a “purification” of ρ, and the quantity

S[", ρ] = S[(I ⊗")(| 〉〈 |)] with ρ = TrA| 〉〈 | (9.108)

is sometimes called the “entropy exchange.”63,107 Note that the entropy exchange
is considered to be a function of the noise " and input ρ and can be shown to
be independent of the purification | 〉. (Purifications are discussed at the end of
Appendix 9.C.)

9.6.2.3 Coherent information

When quantum information is transmitted, the capacity is associated with a quan-
tity called “coherent information,”

Icoh(")= sup{S["(ρ)] − S[(I ⊗")(| 〉〈 |)] : ρ = TrA| 〉〈 |}
= sup

ρ12

(S["(ρ2)] − S[(I ⊗")(ρ12)]) (9.109)

= sup
ρ12

[H [(I ⊗")(ρ12), (1/d)I ⊗"(ρ2)] − log d,

where the supremum, initially over reduced density matrixes of pure states, can be
relaxed because Eq. (9.109) is a convex function of ρ12.

If no additional resources are available, the asymptotic capacity for transmit-
ting quantum information is limn→∞ 1

n
Icoh("⊗n). The upper bound was proved

by Barnum, Nielsen, and Schumacher7 in 1997; the lower bound by Shor135 in
2002. Furthermore, it is also known that one-way classical communication cannot
increase the capacity.16

The most complex situation to analyze is the transmission of quantum informa-
tion with two-way classical communication available. This enables one to apply a
process known as “distillation” to optimize the use of entanglement in mixed states
as described in Ref. 17. Although one expects this capacity to be less than any ca-
pacity for transmitting classical information, this has not been proved.

9.6.3 Quantum error correction

9.6.3.1 Basic error correction process

Quantum error correction poses several challenges. There are new nonclassical
types of errors to correct. In addition, the fragility of a QC means that error cor-
rection is needed during the computation process. In general, one does not care if
a message is destroyed while extracting the desired information. However, error
correction during computation requires the ability to restore the QC to the correct
quantum state. Moreover, the no-cloning theorem precludes copying the quantum
state, while any attempt to discern it via measurements would seem to destroy it.
Indeed, many scientists once thought that error correction in a QC would not be
possible.
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We illustrate the error correction process with the simple example of a 3-bit
repetition code for correcting single bit flips. Let

|c0〉 = |000〉, |c1〉 = |111〉, (9.110)

give an encoding of 0 and 1 into three qubits. (This does not violate the no-cloning
principle because the two states are orthogonal.) Then a general state can be written
in the form

|ψ〉 = a|c0〉 + b|c1〉 = a|000〉 + b|111〉. (9.111)

It is convenient to adopt the standard convention of using Xk and Zk to represent
the action of σx and σz on the kth bits, e.g., X3 = I ⊗ I ⊗ σx , Z2 = I ⊗ σz ⊗ I ,
and the product Z1Z2 = σz ⊗ σz ⊗ I .

A single-bit flip is implemented by σx acting on one of these three bits, and
takes |ψ〉 to a state in one of three orthogonal subspaces, which can be character-
ized by the eigenvectors of Z1Z2 and Z2Z3 as shown in Table 9.4.

The idealized error correction process is thus quite simple, and involves the
following steps:

• Make a measurement with the commutating operators Z1Z2 and Z2Z3 to
determine which subspace the state is in, according to Table 9.4.

• Apply σx to the corresponding bit, i.e., apply Xk . Since σ 2
x = I this will

return the system to the original state |ψ〉.

Note that the error correction process does not require finding the parameters a

and b, which determine the state |ψ〉. It works on “unknown” quantum states. This
is because it uses a measurement process that distinguishes between four orthog-
onal two-dimensional subspaces, but does not distinguish between vectors within
these subspaces.

9.6.3.2 Phase errors

To see this limitation of the code, consider the effect of a single Zk . One finds

Zk|ψ〉 = Zk(a|000〉 + b|111〉)= a|000〉 − b|111〉, (9.113)

Table 9.4 Effect of bit flip errors.

Z1Z2 Z2Z3

|ψ〉 = a|000〉 + b|111〉 +1 +1 (9.112a)
X1|ψ〉 = a|100〉 + b|011〉 −1 +1 (9.112b)
X2|ψ〉 = a|010〉 + b|101〉 −1 −1 (9.112c)
X3|ψ〉 = a|001〉 + b|110〉 +1 −1 (9.112d)

Downloaded from SPIE Digital Library on 18 Jun 2012 to 58.97.130.72. Terms of Use:  http://spiedl.org/terms



Introduction to Quantum Information Theory 443

Figure 9.9 A bit tip of θ .

for k = 1, 2, or 3. The result lies in the space spanned by |c0〉 and |c1〉. Errors of
this type, known as “phase errors” would not be detected. The code

|C0〉 =H⊗3|c0〉 +H⊗3|c1〉 = 1

2
(|000〉 + |011〉 + |101〉 + |110〉), (9.114a)

|C1〉 =H⊗3|c0〉 −H⊗3|c1〉 = 1

2
(|111〉 + |100〉 + |010〉 + |001〉), (9.114b)

can correct phase errors, but not bit flips. Shor133 showed that concatenating the
codes given by Eqs. (9.110) and (9.113) yields a 9-bit code that can correct all
single-bit errors. Subsequently a 7-bit code, known as a CSS code27,141 and related
to the classical 7-bit Hamming code, and then a 5-bit code, which is essentially
unique, were found. These can also correct all single-bit errors.

9.6.3.3 Linear combinations of errors

Although the code of Eq. (9.110) cannot correct phase errors (or σy errors), it can
correct some additional errors, which one might regard as bit “tips.” Explaining
this gives considerable insight into quantum error correction. Let

Tk(θ)=
(

cosθ sin θ

sin θ cosθ

)
= cos θI + sin θXk. (9.115)

Then Tk(θ) has the effect of “tipping” the spin by an angle 2θ , as shown in Fig. 9.9,
and

Tk(θ)|ψ〉 = cos θ |ψ〉 + sin θXk|ψ〉. (9.116)

If one now uses the error correction process described in Sec. 9.6.3.1, there are two
possible outcomes:

• With probability cos2 θ , the procedure detects no error. However, this causes
no problem, because the QC is left in the state |ψ〉, i.e., the measurement has
effectively corrected the error.

• With probability sin2 θ , the procedure detects a flip in the kth bit. However,
it also leaves the QC in the state Xk|ψ〉, from which the next step restores
the QC to state |ψ〉.
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Thus, the procedure for correcting bit flips, also corrects “tips” without even re-
vealing whether they have occurred.

More generally, any linear combination of correctable errors is also correctable.
This leads to the conclusion17,83 that a set of errors {E1, E2, . . . , Et} is correctable
if and only if

〈Epcj , Eqck〉 = δjkdpq, (9.117)

where the matrix dpq does not depend on j = 0, 1. One might expect that a set
of errors is correctable if and only if the subspaces {Ep(a|c0〉 + b|c1〉)} are mu-
tually orthogonal, in which case the right side of Eq. (9.117) would be δjkδpq .
However, the weaker condition, Eq. (9.117), suffices. If V is the matrix that di-
agonalizes D, then Ẽp =∑

q upqEq gives another set of errors for which the

subspaces {Ẽp(a|c0〉 + b|c1〉)} are orthogonal. Moreover, since the original er-
rors Eq =∑

p upqẼp are linear combinations of the modified ones, they can be
corrected in much the same way as the bit tips already described.

9.6.4 Fault-tolerant computation

There is a very elegant group-theoretic method for constructing quantum error cor-
rection codes, yielding what are known as “stabilizer” codes28,29,45,46 or codes over
GF (4). Pollatsek110 has given a nice exposition of this procedure. A subclass of
these, known as CSS codes, were found earlier27,140,141 by using a classical code,
together with a dual code, to generate a quantum code. Several examples115,116,124

of other codes, called “nonadditive,” have also been found. However, there has
been little systematic study of nonadditive codes and it is not yet known whether
or not there are situations in which they may prove advantageous.

Finding error-correcting codes is but one aspect of fault-tolerant computation.
One must also find a mechanism for implementing the basic gates on the en-
coded logical units as well as physical qubits. For stabilizer codes, Gottesman46

has shown that this can always be done. In some situations, as discussed in the next
section, encoding can actually facilitate the implementation of certain gates.

One must also correct errors faster than they propagate. It is certainly not prac-
tical to periodically stop the computer, make a measurement and go through the
described process. One wants to incorporate error correction into the computa-
tion process, e.g., into the quantum circuit. This can be done using additional bits,
known as “ancilla,” to store the measurement outcome. Gates can be constructed
whose effect is equivalent to storing the measurement outcome in the ancilla; then
other gates can use this information to restore the QC to the correct state when
necessary.

Finally, one must design the entire process to minimize propagation of errors.
Whether or not this can be done depends on the actual error rates in the ele-
ments of the QC. Analyses of error thresholds for simple models have now been
performed,1,45,107 leading to threshold estimates of about 10−4 or 10−5. When the
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probability of error in the gates is below this threshold, an arbitrarily long com-
putation can be performed with only a polylogarithmic increase in the size of the
circuit needed to achieve sufficiently small error. Most of these estimates have been
made using the “depolarizing channel,” which is equivalent to assuming that any of
the three possible Pauli errors occurs with probability ε, i.e., the Kraus operators
of Eq. (9.23) are A0 =

√
1− 3εσk and Ak = √εσk for k = 1, 2, 3. More realis-

tic models, which correspond to specific physical implementations of a QC and
include the possibility of correlated errors, must be studied.

One can relate the fundamental errors to the noise model in the form of
Eq. (9.23) by thinking of the QC as being in the mixed state∑

k

Ak| 〉〈 |A†
k =

∑
k

pk|Ek 〉〈Ek |, (9.118)

where Ek = (Ak )/‖Ak ‖ and pk = ‖Ak ‖2. Then the process of replacing
Ek by Ẽk =∑

k vk�E� corresponds to making a linear transformation on the Kraus
operators Ak . But, as pointed out after Eq. (9.23), the operators Ak are not unique;
in fact, they are determined only up to a unitary transformation. Thus, selecting
errors Ẽk that diagonalize Eq. (9.117) corresponds to making a choice of Kraus
operators in the underlying noise model.

For further discussion of fault-tolerant computation and references to additional
work, see Chapter 10 of Ref. 107 and the review articles cited in Sec. 9.7.2.

9.6.5 DFS encoding

There is another approach to dealing with noise84,92 that is worth mentioning be-
cause these encodings have other important applications.

The interaction term of Eq. (9.17) can be written as VCE =∑
k Sj ⊗ Tk with

Sj and Tj acting on HC and HE , respectively. In general, one does not expect the
eigenvectors VCE or HCE to be product states. One exception occurs when all of
the operators Sj commute so that they have simultaneous eigenvectors. However,
even when the Sj do not commute they may have a few simultaneous eigenvectors
or, more generally, an invariant subspace KC for which Sj KC ⊂HC for all j . If
KC is also an invariant subspace for HC , it will be invariant under HCE and the
unitary group U(t) determined by Eq. (9.10). Thus, a system initially in a state in
KC will remain there. This is called a decoherence free subsystem∗ (DFS).

It might seem that this situation is so special that it would rarely arise. However,
there are physically realistic scenarios in which this does occur. In the most com-
mon, the operators Sj generate a group (or a Lie algebra) for which KC transforms
as an irreducible representation. One underlying physical model corresponds to a
situation at low temperatures in which the errors are highly correlated.

∗The acronym DFS is used for both decoherence free subsystem84 and decoherence free sub-
space.92 In the latter, only the trivial representation is allowed.
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In considering the resilience of certain DFS codes against exchange errors, Ba-
con et al. realized4 that the exchange interaction could actually be used for uni-
versal computation. To understand the underlying idea, suppose that 0 and 1 are
encoded as

|c0〉 = |01〉, |c1〉 = |10〉. (9.119)

This code can detect, but not correct, single bit flips. The exchange operator,

Ejk = I +Xj Xk + Yj Yk +Zj Zk, (9.120)

interchanges the values of bits j and k, i.e.,

Ejk|i1 . . . ij . . . ik . . . in〉 = |i1 . . . ik . . . ij . . . in〉. (9.121)

Exchange (also known as SWAP) is equivalent to a pair of bit flips if and only
if ij 	= ik . Thus, E12|01〉 = |10〉 so that E12|c0〉 = |c1〉 and the exchange has the
same effect on the encoded logical units |c0〉 and |c1〉 as σx . It was shown in Ref. 4
that certain 4-bit DFS encodings had the property that all the gates needed for
universal quantum computation could be implemented using exchange on phys-
ical qubits. Subsequently, it was realized5 that 3-bit encodings would suffice for
universal computation with the exchange interaction.

These encodings may be quite useful in certain implementations, such as quan-
tum dots. Implementing a σx or σz gate requires control of an anisotropic magnetic
field. However, the exchange interaction in Eq. (9.120) can be implemented with
an isotropic field. Multiplying the total number of qubits needed by a factor of 3 or
4 may be a small price to pay for efficient implementation of gates.

9.7 Conclusion

9.7.1 Remarks

9.7.1.1 Quantum theory

When quantum theory was first proposed, some aspects seemed so puzzling and
contrary to ordinary experience that many were reluctant to accept it. However,
its success in explaining physical phenomena and predicting the results of experi-
ments were soon more than adequate to validate it as a physical theory. Since then,
it has repeatedly been vindicated experimentally and its domain of applicability
extended “from atoms to stars.”93 Nevertheless, some puzzling features continued
to be debated for decades.

With the advent of QIP, a new attitude has emerged. Instead of expecting the
physical world to conform to views shaped by experience with phenomena that can
be explained by classical physics, we accept and try to understand the quantum
world on its own terms. Rather than regarding quantum theory as full of paradoxes
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to be explained away, we look for new ways to exploit “quantum weirdness.” This
view has led to new advances in physics and in information theory and has shaped
my exposition in this chapter.

9.7.1.2 Entanglement

A topic that has generated considerable discussion is the role of entanglement in
quantum computation. Is this the key feature that makes quantum computation
powerful? For two insightful discussions, see Jozsa and Linden75 and Steane.140

In my view, it is useful to distinguish between the explicit role of entanglement
correlations, which are essential in the EPR experiment (Sec. 9.3.2) and such pro-
cedures as dense coding (Sec. 9.5.3) and teleportation (Sec. 9.5.4), and the implicit
uses of entanglement. Although one can find bases for C2n

composed entirely of
product states, most states in C2n

cannot be written as products. Any algorithm
that requires access to arbitrary states in C2n

uses entangled states, whether or not
the explicit correlations play a role.

For example, Lloyd95 showed that Grover’s algorithm on a list of size M can
be implemented without entanglement if M distinct states (say the M lowest lev-
els of an oscillator) are used. However, this is not practical when M is large and
implementations using tensor products lead to entangled states. Moreover, if an
algorithm never uses entangled states, all gates necessarily take product states to
product states, implying that only 1-bit gates are used. Thus, in some sense, quan-
tum parallelism requires superpositions, but universality requires entanglement.

9.7.1.3 Physical implementation

Among the most commonly asked questions about QCs are “How realistic is this?”
or “When will someone actually build a quantum computer?” The answer depends,
to some extent, on exactly what one means by a QC. Rather than even attempting
to answer this question, I refer the reader to the excellent article by DiVincenzo.36

The following brief quotations from the introduction
It does not require science fiction to envision a quantum computer . . .

and conclusion,
So, what is the “winning” technology going to be? I don’t think that any living mortal
has an answer to this question, and at this point it may be counterproductive even to ask
it.

still give an accurate picture of the situation in 2003.
Although experiments demonstrating various facets of quantum computation

have been performed, a full-fledged QC seems to be a long way off. However,
some other types of QIP seem more feasible. Of these, QKD distribution seem the
most likely to soon be realized at a practical level.

9.7.2 Recommendations for further reading

This chapter could provide only a very brief introduction to the many facets of QIT,
and some important subtopics received little or no mention. I have endeavored to
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provide references to key papers and to a representative selection of recent work
through which readers can find additional references on particular topics. However,
the references are not comprehensive and many important papers are not cited. In
this section, I try to provide some guidance to those who wish to learn more about
various aspects of the fascinating field of QIT.

The best general reference on QIT is the text by Nielsen and Chuang.107 It is
comprehensive and thorough, yet begins each topic at an elementary level, requir-
ing no background beyond linear algebra. The recent text by Kitaev et al.,82 which
has a rather different flavor and a focus on computational models and complexity,
is also recommended. The lecture notes of Preskill111 and the links on his web-
site were invaluable before the publication of Ref. 107, and remain an important
resource.

Wick150 has given a very readable account of the historical development of
the foundations of quantum theory and the experiments associated with Bell’s in-
equalities. This book also contains a more mathematical appendix by Faris40 that
is highly recommended. David Mermin has written a number of insightful articles
on related topics; many of these were published in Physics Today (e.g., Ref. 103)
and are collected in a delightful volume of essays.102 Many of Bell’s papers, which
are available in Ref. 8, are quite readable. Two recent reviews by Werner148 and
Werner and Wolf149 contain useful insights from a perspective more directly con-
nected to QIP.

There are a number of review articles that provide a good introduction to par-
ticular topics. The excellent pair of articles73,74 by Jozsa were already mentioned
in Sec. 9.4.3. For a nice account of the development of Grover’s algorithm, see
Ref. 53. For valuable reflections on the nature of the power of quantum computa-
tion, see Steane.142 Those who want an introduction to quantum computation that
includes the quantum circuit model might consult Refs. 30 and 122.

Pollatsek110 has given a nice description of the construction of stabilizer codes.
For additional introductory treatments of quantum codes and other aspects of fault-
tolerant computation, Gottesman,47 Preskill,113,114 and Steane143 are all highly
recommended. For more detailed accounts, see Gottesman45,46 or Preskill.112 Li-
dar and Whaley have recently written a survey92 of another approach, the DFS
method alluded to in Sec. 9.6.5.

The detection and quantification of entanglement are extremely active areas
of current research. The reviews by Bruss26 and by Horodecki et al.67 give good
overviews of this complex subject.

To learn more about quantum entropy, the best place to begin is Wehrl’s review
article.147 One can also consult the monograph by Ohya and Petz108 and the recent
review.123 The extension of Shannon’s information theory to quantum systems is
an active area of research. See Bennett and Shor16 for an introduction to the differ-
ent types of capacities. For a more advanced account of many results and related
topics, the monograph by Holevo63 is recommended. For the most recent results,
one should see the references cited in Sec. 9.6.2.

Finally, some websites are worth mentioning. Most people working in QIP post
preprints at arxiv.org/quant-ph and check it regularly for the latest developments.
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To find the most recent results that have been published in refereed archival jour-
nals, one can consult the Virtual Journal of Quantum Information,146 edited by
D. DiVincenzo. In fall 2002, a series of workshops were held at the Mathematical
Sciences Research Institute (MSRI) at Berkeley. The talks, including some excel-
lent tutorials, are available as streaming video (together with pdf files of the notes)
at the MSRI website.98 Many talks from workshops at the Institute for Theoreti-
cal Physics at the University of California at Santa Barbara in fall 2001 are also
available on the Internet.71

Appendix 9.A Dirac notation

Most of the literature in QIP uses the physicist’s convention of writing vectors and
projections using Dirac’s bra and ket notation, which is explained here.

If we let u represent a column vector in Cm and u† its conjugate transpose, then
(except for placement of the complex conjugate) the usual Hermitian form can be
written as

〈v, u〉 = v†u=
(v1, . . . , vm)

 u1
...

um

 . (9.122)

If the order is reversed, uv† is an m× m matrix corresponding to the map w $→
〈v, w〉u, and it is natural to write

|u〉〈v| = u v† =
 u1

...

um

 (v1, . . . , vm)

. (9.123)

When u= v, this becomes the 1D projection onto the subspace spanned by u, i.e.,

Pu = 1

‖u‖2 uu†= |u〉〈u|‖u‖2 . (9.124)

In an abstract m-dimensional vector space, a “ket” vector |u〉 is analogous to a
column vector. Its “dual” or “bra” vector 〈u| is the analogue of a conjugated row
vector. Moreover, this duality can be made completely rigorous by identifying 〈u|
with a vector in the usual Banach space dual via the Riesz representation theorem.
The interpretation just given for 〈v, u〉 and |u〉〈v| then extend to general vector
spaces in a natural way. (Note that it is natural to use the physicists’ convention in
which the inner product is linear in the second variable and antilinear in the first.)

In this notation, it is common to replace u by any convenient label, such as a
(nondegenerate) eigenvalue, which identifies the vector u. Thus, one might write
|λk〉 or even |k〉 for the eigenvector vk associated with λk . In quantum computation,
it is common to use |0〉 and |1〉 to label the two states of a qubit. As long as the
convention used is clear, this should present no problem.
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Appendix 9.B Trace and partial trace

The trace of a matrix (or operator) Q satisfies

TrQ=
∑

k

qkk =
∑

k

〈φk, Qφk〉, (9.125)

where {φk} is any orthonormal basis and qkk denote the diagonal elements in
a fixed matrix representation of A. One can define an inner product, known as
the Hilbert-Schmidt inner product, on the bounded operators B(H) acting on any
finite-dimensional space by

〈A, B〉 = Tr (A†B). (9.126)

When Q is an operator on a tensor product space, HA ⊗HB , one often writes
QAB . Formally, the partial trace TrB over HB is defined by the requirement that
QA = TrBQAB satisfies

〈χ, QAψ〉 =
∑

k

〈χ ⊗ φk, QABψ ⊗ φk〉 (9.127)

for any pair of vectors χ , ψ and any orthonormal basis {φk} for HB . There are
several equivalent definitions that are somewhat easier to use. Any operator on
HA⊗HB can be written in the form QAB =∑

j cj Sj⊗Tj with Si and Tj operators
on HA and HB , respectively. Then

QA = TrBQAB =
∑

j

cj (TrTj )Sj , (9.128)

where Tr now denotes the usual trace on HB . In particular TrBS ⊗ T = (TrT )S.
When the matrix M is written in block form

M11 M12 . . . M1n

M21 M22 . . . M2n
...

...
...

Mn1 Mn2 . . . Mnn

 , (9.129)

with the matrixes Mjk acting on HB , then TrBM is the matrix with elements
TrMjk, i.e, one takes the usual trace of each block, and

TrAM =
∑

j

Mjj , (9.130)

i.e., one sums over diagonal blocks.
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Although less common, one can also formally define a “partial inner product,”
which was used in Sec. 9.3.4. If  =∑

jk cjk|αj 〉 ⊗ |βk〉, then

〈φ,  〉A =
∑

k

(∑
j

cjk〈φ, αj 〉
)
|βk〉. (9.131)

When the Hilbert spaces are chosen so that the inner product is given by an integral,
this takes the familiar form

〈φ,  〉S =
∫

φ(s) (s, t) ds. (9.132)

Appendix 9.C Singular value and Schmidt decompositions

On the tensor product of two Hilbert spaces with orthonormal bases {φj } and {χk},
respectively, an arbitrary vector | 〉 can be written as

| 〉 =
∑
jk

bjk|φj 〉 ⊗ |χk〉 (9.133)

=
∑

j

αj |φj 〉 ⊗ |ωj 〉, (9.134)

where |ωj 〉 = α−1
j

∑
k bjk|χk〉 and αj =

√
|bjk|2. In general, the vectors {ωj } in

Eq. (9.134) are not orthogonal. The so-called Schmidt decomposition is simply
the statement that any vector on a tensor product space can be written in a form
similar to Eq. (9.134) using orthonormal bases. It is an immediate consequence
of the singular value decomposition (SVD) which is itself a corollary to the polar
decomposition theorem.

Theorem 1 (Polar decomposition). Any m × n matrix A can be written in the
form A= U |A|, where the n× n matrix |A| = √A†A is positive semidefinite and
the m× n matrix U is a partial isometry.

The term partial isometry means that U†U (or, equivalently, UU†) is a projection.
In general, U need not be unique but can be uniquely determined by the condition
kerU = ker A. If A is a square n× n matrix, then U can instead be chosen (non-
uniquely) to be unitary. Since |A| is self-adjoint, it can be written as |A| = V DV †

where D is a diagonal matrix with nonnegative entries and V is unitary. Inserting
this in Theorem 1 with U chosen to be unitary yields the SVD since W = UV is
also unitary.

Theorem 2 (Singular value decomposition). Any n×n matrix A can be written in
the form A=WDV † with V and W unitary and D a positive semidefinite diagonal
matrix.
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The nonzero elements of D are called the singular values of A. They are easily seen
to be the eigenvalues of |A| and, hence, their squares yield the nonzero eigenvalues
of A†A. As an immediate corollary, one finds that A†A and AA† are unitarily
equivalent and that V and W are, respectively, the unitary transformations that
diagonalize A†A and AA†. These results can be extended to nonsquare matrixes if
the requirement that V and W be unitary is relaxed to partial isometry.

There are two ways to obtain the “Schmidt decomposition” from the SVD. One
is to simply apply the SVD to the coefficient matrix bjk in Eq. (9.133). The other
is to observe that there is a one-to-one correspondence between vectors that have
the form of Eq. (9.133) and operators of the form

K =
∑
jk

bjk|φj 〉〈χk|. (9.135)

Moreover, if ρAB = | 〉〈 |, then

ρA ≡ TB(ρAB)=K K
†
 , (9.136a)

ρB ≡ TA(ρAB)= (K
†
 K )T , (9.136b)

where ρA and ρB are the reduced density matrixes obtained by taking the indicated
partial traces TB and TA. One then obtains the following result.

Theorem 3. Any vector that has the form of Eq. (9.133) can be rewritten as

 =
∑

k

µk|ψ̃k〉 ⊗ |χ̃k〉, (9.137)

where µk are the singular values of the matrix B , the bases {ψ̃k} and {χ̃k} are
orthonormal and related by µkψ̃k =K χ̃k with K given by Eq. (9.135).

It follows immediately that the reduced density matrixes ρA and ρB have the same
nonzero eigenvalues {µk

2} and {ψ̃k} and {χ̃k} are the eigenvectors of ρA and ρB ,
respectively. Conversely, given a density matrix whose spectral decomposition is

ρ =
m∑

k=1

λk|φk〉〈φk|, (9.138)

one can define the pure state | 〉 =∑m
k=1
√

λk|φk〉 ⊗ |ψk〉 on H ⊗H with {ψk}
any m orthonormal vectors on H. Then | 〉 is called a purification of ρ since
ρ = TrB | 〉〈 |.

Schmidt actually proved the SVD for integral kernels. For more about the his-
tory of the SVD and Schmidt decompositions, see Chap. 3 of Ref. 66 and Appen-
dix A of Ref. 80.

Downloaded from SPIE Digital Library on 18 Jun 2012 to 58.97.130.72. Terms of Use:  http://spiedl.org/terms



Introduction to Quantum Information Theory 453

Appendix 9.D A more complete description

9.D.1 Continuous variables

Most topics in QIT can be discussed using a model in which the underlying Hilbert
space is finite dimensional and isomorphic to Cd , particularly for d = 2n. This en-
ables one to avoid some delicate issues associated with operators, such as the po-
sition and momentum, with continuous spectrum. This can be refreshing, as some
expositions of quantum theory leave the reader with the impression that the fact
that particles do not have a definite position is the most fundamental feature of
quantum theory. However, the very word “quantum” has quite a different mean-
ing, originating with the observation that atoms emit and absorb light in a way
that suggests they can have only certain allowed energies (the eigenvalues of the
Hamiltonian).

Thus, observables with discrete spectra display fundamental quantum features.
However, the commutator of the operators associated with a pair of observables
limits the accuracy with which the two observables can be simultaneously mea-
sured. Indeed, the inequality

�A�B ≥ 〈φ, (AB −BA)φ〉, (9.139)

where �A = √〈φ, A2φ〉 − |〈φ, Aφ〉|2 gives a general uncertainty principle, re-
gardless of whether the operators A and B have discrete or continuous spectra (or
both).

9.D.2 The hidden spatial wave function

The standard description of qubits presented used in this chapter is incom-
plete. For example, the state of a electron is properly described by a vector in
L2(R3)⊗C2, such as |f (x)⊗φ〉, where |φ〉 describes the spin and

∫
�
|f (x)|2d3x

is the probability of finding the electron in the region �⊂R3. The statement “qubit
in state |φ〉 in Sue’s lab” should be interpreted as meaning that the full wave func-
tion of the qubit is |fS(x)〉 ⊗ |φ〉, where fS(x) has support in Sue’s lab.

Thus, the full wave function for an entangled pair of particles in the Bell state
|β1〉 has the form

1√
2

(|f, 0〉 ⊗ |g, 1〉 + |f, 1〉 ⊗ |g, 0〉), (9.140)

where we have written |f, 0〉 for |f (x, t)〉 ⊗ |0〉 and the functions f and g may
depend on time t as well as position x. Sending the particle in Sue’s lab to Tom
means using a physical process so that f (x, t0) has support in Sue’s lab and at
some later time f (x, t1) has support in Tom’s lab.
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9.D.3 The Pauli principle

When there are n electrons, the full wave function must be antisymmetric with
respect to exchange of particles. Thus, a simple product such as |f, 0〉 ⊗ |g, 1〉
must be replaced by an antisymmetrized product

1√
2

(|f, 0〉 ⊗ |g, 1〉 − |g, 1〉 ⊗ |f, 0〉). (9.141)

In Eq. (9.141), the spin state |0〉 is always associated with the spatial state f and
the spin state |1〉 is always associated with the spatial state g, regardless of whether
it occurs as the first or second term in the product. This antisymmetry reflects the
fact that electrons are identical particles that cannot be distinguished. The antisym-
metrized wave function for an entangled state of the form of Eq. (9.140) can be
written as

1

2
[(|f, 0〉 ⊗ |g, 1〉 − |g, 1〉 ⊗ |f, 0〉)+ (|f, 1〉 ⊗ |g, 0〉 − |g, 0〉 ⊗ |f, 1〉)]

= 1√
2

(|fg〉 − |gf 〉) 1√
2

(|01〉 + |10〉). (9.142)

The fact that the wave function can be factored into an antisymmetric spatial func-
tion times a symmetric spin function is rather atypical.

In general, the antisymmetry requirement applies only to the full wave function,
not to the individual space and spin components. Indeed, for n ≥ 3 there are no
nontrivial antisymmetric functions on C⊗n

2 . In the general situation,  has the
form

 (x1, x2, . . . , xN)=
∑

k

Fk(r1, r2, . . . , rN)χk(s1, s2, . . . , sN ), (9.143)

where xk = (rk, sk) with r a vector in R3 and sk in Z2, χk are∗ elements of C2n
,

and the “space functions” Fk are elements of L2(R3N ). When  is antisymmetric,
the sets {Fk} and {χk} each transform as a representation of Sn. If these representa-
tions are irreducible, those for {Fk} and {χk} have dual Young tableaux. For further
discussion see Refs. 57, 87, 124 and 144.
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2D electron gas (2DEG), 117

A
ab initio, 323–324
Abelian hidden subgroup problem, 427
absorption, 60–61, 192
acceptance probability, 223
accessible information, 436
adatom, 7–8
addition energy, 127–128
adsorption, 223, 326, 365–366
aggregate, surfactant, 225–226, 228–229
amphiphile, 227
ancilla, 444
angle of incidence, 47–48
anisotropy, density, 9
anisotropy, optical, 7
anomalous dispersion, 59
artificial atom, 109
association rate constant, 232
asymptotic capacity, 439
atomic elasticity (AE), 131
atomic force microscope (AFM), 112, 339,

344–347, 364–365
magnetically activated, 346
tapping mode, 344–345, 364–365

atomic orbital, 280
atomistic methods, 3, 208, 260, 274, 287
Auger transitions, 129
augmented continuum theories, 302–304
authentication, 433
automatic adaption, 301
average, statistical, 208, 221–222
average, temporal, 208, 214, 222
axial current, 153, 171
azimuthal current, 151

B
B92 protocol, 431
ballistic aggregation, 8
band gap, 51, 54, 60, 71–72, 75–76, 111,

150–151
basis, 67, 324
BB84 protocol, 431
beamsplitter, 29
Bell inequalities, 416
Bell measurement, 434
Bell states, 414–415
bianisotropy, 7, 10–11, 15, 32
biaxiality, 22
bideposition, 9
biexciton, 120
binding energy, 120
biochip, 30
biomedicine, 2
biopolymer, 230–231
bit flip, 442–443
Bloch equations, 151, 153, 183
Bloch functions, 65, 152, 178–179
Bloch sphere, 412
body force, 262
body-centered cubic (BCC) lattice, 73
Bohr magneton µB , 124
Born–Oppenheimer approximation, 275,

324
bosonic commutation, 171
boundary conditions, 233, 239, 335–337,

341
absorbing, 240
free, 210, 215
helical, 231
minimum image, 357
no-slip, 321, 351–353

465
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periodic, 209, 215, 235–236, 240,
333–334

stochastic, 333
zero shear, 352

boundary effects, 333
boundary value problem, 148, 159, 182,

270
Bragg phenomenon, 26

circular, 26–27, 30
Bragg soliton, 63
Brenner potential, 216
Brillouin zone, 54, 150–151, 153–154
brittle, 295
Bruggeman formalism, 15–16, 23
Buckingham potential, 216
buckyball, 217
bundle, 278

C
canonical ensemble, 290
carbon nanotube, 2, 30, 146–147, 259, 287,

293
armchair, 149
axial conductivity, 154–156
chiral, 149
conductivity law, 154
cross-sectional radius, 149
crystalline lattice, 148–149
dual index to characterize, 149
dynamical conductivity, 153, 171
edge effects, 159–162
electron transport in, 148–153
geometric chiral angle, 149
linear electrodynamics, 146
metallic conductivity, 151, 154
negative differential conductivity,

167–170
nonlinear effects, 146
quantum electrodynamics, 146
semi-classical conductivity, 155
zigzag, 149

Cauchy relation, 285–286
Cauchy’s principle, 263
Cayley–Hamilton theorem, 56
cellular automata, 137
channel, 410
channel capacity, 435, 439
charge transfer, 216
chemical potential, 128, 154, 209, 223
chemical vapor deposition, 112
classical light, 192
cluster, 208, 220, 225–226, 228–229

CNOT gate, 404
coarse graining, 225, 233–234, 241
coherent information, 441
columnar morphology, 6–8
columnar thin film, 7, 10, 17, 22, 24
commutation relations, bosonic, 171
compatibility, 260, 268
compatibility equation, 268
completely positive maps, 410
compounded wavelet matrix (CWM),

235–236, 239
computational basis, 400
computational complexity, 404
concurrent multiscale method, 233
conductivity, negative absolute, 170
conductivity, negative differential, 146,

167–170
configurational bias, 224
configurational integral, 291
confinement energy, 118
confinement potential, 115
conservation law, 21, 187
constant pressure ensemble, 294
constitutive dyadic, 10, 12, 13
constitutive matrix, 15
constitutive relation, 11–13, 21, 147–148,

154, 260, 269–270
contact angle, 328, 348–349, 351, 353
contact line, 348, 353
continuous variables, 453
continuum, 7, 13, 16, 261
continuum mechanics, 131, 210
controlled phase gate, 429
correlation energy, 133
correlation functions, 327
Coulomb

blockade, 127, 167
effect, 123
energy, 127
interaction, 167–168, 179
screening, 156

coupling of properties, 311
CPT, 410
crack spalling, 273
creation and annihilation operators, for

electron, 178
for electron-hole pairs, 179
for photons, 185–186

critical micelle concentration, 227
crystal, 2
CSS code, 443
current instability, 169
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D
dark states, 126
data hiding, 433
data structures, 333
de Broglie thermal wavelength, 224
decoherence free subspace, 445
decoherence free subsystem (DFS), 445
defect modes, 84–88
deformation gradient tensor, 267
deformation map, 266
dense coding, 433
density functional theory, 217, 324–326
density matrix, 152, 407–408
density of modes, 54–55, 57, 110
dephasing, 130
depolarization, 15, 24, 183, 188, 190–192

dyadic, 181
field, 181, 185, 187, 189, 193
Hamiltonian, 182, 185
shift, 183–184, 188, 192–193

depolarizing channel, 445
desorption, 366
Deutsch–Jozsa problem, 420
diamagnetic shift, 125
dielectric, 7, 21
digital signatures, 433
dip-pen nanolithography, 346
dipole moment, electron-hole pair, 179, 181
dipole moment, atomic, 171, 177
Dirac delta function, 55
Dirac notation, 449
discrete model, 297
dislocations, 258
dispersion

energy correction, 326
equation, 54, 146
interaction, 325
of π -electrons, 148
of π -electrons in carbon nanotube,

150–151
of π -electrons in carbon nanotube,

approximate law, 151
of π -electrons in graphene, 150
of π -electrons in quantum superlattice,

169
displacement field, 239
dissipative particle dynamics, 335, 338

smoothed, 338
dissociation rate constant, 232
DNA, 320, 368–369
drag coefficient, 295
Drude-type conductivity, 175

ductile, 295
dyad, 15
dyadic, 7, 171
dynamic instability, 231

E
edge condition, 159
edge resonance, 162
edge scattering pattern, 161
effective

boundary conditions, 156–157
current, 156
mass, 123
mass model, 132
parallelism, 398

eigenfunction symmetry, 71–73, 75–76
eigenstates, 112
eigenvalue equation, 56
elastic continuum, 234, 239, 243
elastic modulus, 269
elastic wave, 239
elastodynamics, 31
electric field operator, 170, 186, 189
electric field phasor, 16
electro-optic devices, 46
electrochromism, 31
electrodynamics

classical, 3, 154, 192–194
nonlinear, 163
quantum, 147, 170, 184, 193–194

electroluminescence, 31
electromagnetic field operator, 170, 185
electromagnetic field quantization, 170
electron, 115

affinity, 113, 115
beam lithography, 112
density, 285
pump (EP), 128, 135

electron-hole effective mass concept, 192
electronic free pass in nanotubes, 154
element, 271
ellipsoid, 14
embedded atom method, 217, 285
embedding function, 286
emission, 192
empirical tight binding, 281
encoding information, 397
ensemble, 209, 211–213, 215–216, 221,

223–224, 227–228, 290, 436
entanglement, 414, 418
entanglement-assisted capacity, 440
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enthalpy, 216
entropy exchange, 441
envelope wave function, 127
environment, 409
epitaxial growth, 2, 109, 111, 273
EPR experiment, 415, 417
equilibrium, 260, 264–265, 270, 290
equipartition theorem, 211
ergodicity, 213, 221
error threshold, 444
ethics, 1, 4
Euler–Cauchy law, 263
evanescence, 18, 121
evaporation, 7, 8, 32
Ewald summation, 284, 331
exchange errors, 446
exciton, 111, 119–120, 123

resonance, 180
transition frequency, 192

external current, 171

F
Fabry–Pérot etalon, 59
face-centered cubic (FCC) lattice, 73–74
far infrared, 121
far-zone scattered power density, 161
fast Fourier transform, 241, 399
fault-tolerant computation, 444
Fermi distribution, 111, 153–154
Fermi level, 150–151
Field-effect quantum dot (FEQD), 116
finite element method, 233–234
finite-difference time-domain (FDTD)

method, 46, 82–88, 239
Floquet–Bloch theorem, 53
flow, 337

charge, 358
Couette, 337, 353–354, 356
Hagen–Poiseuille, 354
multiphase, 338
Poiseuille, 337, 353, 356
Taylor–Couette, 354

fluid mechanics, nanoscale, 322
Fock qubit, 189, 191
Fock state, 189, 193
force field, 327–329
free electron laser, 121
free space, 11, 18
free-space wave number, 156
free surfaces, 261, 306
frequency spectrum, 241–242
fullerene, 146, 148, 208, 217, 221, 281–282

G
gain band, 183
gap solitons, 63
gate, 115–116, 404
gradient of deformation, 267
graphene, 148, 150

conductivity, 150, 154–155
crystalline lattice, 148

graphite, 281–282, 324, 326, 370
grating, 29
Green function, classical dyadic, 171

retarded, 184
scalar, 172

Green–Lagrange strain tensor, 267
ground state, 275
group velocity, 55, 57
Grover oracle, 422
Grover’s algorithm, 422
gyrotropy, 12

H
Hadamard transform, 413
Hallgren’s algorithm, 413, 425
Hamiltonian, 210, 214, 323, 405
hardening modulus, 258
harmonic number, 164
Hartree–Fock method, 276
heat bath, 211–212, 243
Heaviside function, 64
helicoidal bianisotropic medium, thin-film,

10, 17, 22
Hellman-Feynman theorem, 289
Helmholtz free energy, 291
Hertz potential, scalar, 157, 159
heterostructure, 111
hidden subgroup problem, 427
high-order harmonic, 162–164, 166
Hilbert-Schmidt inner product, 450
Hohenberg–Kohn theorem, 276
Holevo bound, 436, 438
homeland security, 1
homogeneous

homogeneous broadening, 111
linewidth �, 130

homogeneous broadening, 193
homogenization, 13, 23
honeycomb cell, 149, 152
hybrid, 321, 336–337
hybrid methods, 3, 261
hydrogen bond, 325, 348, 356, 358, 360,

362
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hydrophilic, 227, 322, 341–342, 346, 348,
351–352, 354, 358, 360

hydrophobic, 227, 322, 341, 344–345,
347–352, 354, 358–361, 365

gating, 358
pore, 360–361

hyperelastic, 269

I
ideal gas, 291
impedance mismatch, 239, 241
importance sampling, 223, 291
indistinguishability, 291
inhomogeneous broadening, 111, 126
insulator, 6
interaction energy, 324–325
interaction potential, 3, 321
interatomic potential, 216–217, 221, 233,

240, 243, 282
interband transition, 154, 162, 168, 175,

177, 179, 181
interferometry, 340
interlayer dielectric, 17, 31
intraband, 119
intraband motion, 154, 168, 179, 181
intraband transition, 175, 181
intrinsic length scale, 260, 304
ion bombardment, 8
ion channel, 355, 357
isolated systems, 405

J
Jacobi iteration technique, 16
Jellium, 326
joint density of states, 110

K
k · p method, 131
kinematics, 261, 265–268
kinetic energy, 210–212, 215
Knudsen number, 335–336
Kramers-Kronig relations, 48
Kraus representation, 411
Kronecker delta function, 67

L
Landau level, 125
laser action, 73
lateral cap model, 231–232
lattice basic vectors, 149
lattice mismatch, 117
lattice statics, 261, 287–289
lead, 128

Lennard–Jones, 330
fluid, 337, 352–353
interaction, 350
molecules, 354
potential, 216, 235, 240, 284, 330, 354

life time, 110
linear combination of atomic orbitals, 217,

280
liquid crystal, 7, 30
lithography, 2
local field, 148, 172, 179–180, 182,

184–185, 192–194
local-density approximation, 277
Lomer dislocation, 299
long-range interaction, 331, 341
long-time limit, 209, 234, 241
Lorentz-Berthelot mixing rule, 330
low-dimensional nanostructures, 146
luminescence, 30, 32, 122
Luttinger spinor, 124

M
macromolecules, 109
macroscopic approaches, 2
magnesium fluoride, 6
magnetic field operator, 170
magnetic field phasor, 16
magneto-optics, 12
magnetoelectricity, 11
many-body effects, 285
many-body potential, 216
Markov chain, 223
Markovian approximation, 171, 175
materials design, computer aided, 258
matrizant, 17
Maxwell’s equations, 16, 48

quantization of, 170
mean-field approximation, 185
mechanical behavior, 3, 32
memoryless channel, 430, 439
mesa, 119
mesoscale, 322, 337, 371
mesoscopic model, 335, 365
metal, 6
micelle, 226–229
microcanonical ensemble, 294
microcavity, 134, 172, 175
microphotoluminescence, 119
microscopic approach, 2
microscopic state, 3
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microstructure, 235–236, 239
microtubule, 230
mixed methods, 261
mixed state, 407
modified embedded atom method, 217
modulation-doped heterojunction, 116
molecular beam epitaxy (MBE), 112
molecular dynamics, 3, 261, 287, 293–295

ab initio, 217, 244, 276
canonical, 211
isobaric, 216
microcanonical, 210
non-equilibrium, 209

molecular gear, 357
molecular interaction potential, 3
molecular tagging, 342
monolayer, 112
monotonicity of relative entropy, 437
Monte Carlo method, 3, 221, 223, 225, 227,

287, 290–292
kinetic, 209, 230–231, 243

morphology, 2, 9
chevronic, 9
chiral, 9
columnar, 6–8
helicoidal, 10
nematic, 9, 12
zigzag, 9

multibody contributions, 329
multipole expansion, 332
multiscale methods, 3, 233, 243, 258,

320–321, 334, 359, 371
multisection, 10, 12, 29
mutual information, 437

N
nanobubbles, 344–345
nanochannel, 339–340, 357, 369
nanocomputer, 4
nanocrystal, 112
nanoelectromechanical systems, 2, 256
nanoelectromagnetics, 2, 146
nanoelectronics, 4, 158
nanofluidics, 3, 320–321, 327, 341, 351,

362, 371
nanoindentation, 301
nanomechanics, 3, 256
nanopore, see pore
nanoscale sensor, 320
nanosieve, 31
nanostructures, 146, 258–259, 286, 303
nanotechnology, 46

nanowire, 278–279
natural linewidth, 119
no-cloning principle, 413
nodes, 271
noise, 409
noise current, 171
noncontact scanning force microscopy, 344
nonhomogeneity, 146–147, 157, 162, 170,

194
nonhomogeneous nanotube, 170
nonlinear

composite, 162
diffraction, 162
optics, 3, 62, 148
transport, 148

nonlinearity, 146, 153, 162, 168, 169
nonlocality, 260
nonorthogonal bases, 401
nonradiative decay, 173, 177
Nosé–Hoover thermostat, 294
nuclear magnetic resonance, 339–340

O
observable, 406
one-way quantum computer, 404
open system, 223, 409
optical

activity, 10, 24, 27
coatings, 8
filter, 24, 26–28
fluid sensor, 7, 17, 29
interconnect, 30
spectroscopy, 121
switch, 7, 31
transition band, 154

oracle, 420
orthogonal projection, 407
orthorhombicity, 9, 12
osculating plane, 11
overlap region, 336
overlapping integral, 150, 169

P
p-polarization, 48, 77, 81
pair potentials, 282, 284
partial inner product, 451
partial isometry, 451
partial trace, 450
particle annihilation, 224
particle creation, 224
particle-particle particle-mesh, 332
partition function, 224, 290
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Pauli blocking, 121, 126
Pauli matrix, 412
Pauli’s exclusion principle, 281
perfectly matched layer, 83
period finding, 425
periodicity, 12, 24, 30
permeability, 11

relative, 47
permittivity, 11, 22

relative, 47, 171, 175, 179
perturbative methods, 17
phase

defect, 29
diagram, 327
error, 442
space, 214–215, 222–225, 243, 293
transformation, 216

phonon bottleneck, 129
photoabsorbtion, 112
photobleaching, 134
photocatalysis, 32
photoexcitation, 126
photoluminescence, 126
photon vacuum renormalization, 175
photonic band gap (PBG) structure, 2, 26,

29, 46
photostability, 114
physical vapor deposition, 2, 6–7, 32
piezoelectricity, 24, 118
plane wave, 18–19
plane wave methods, 63–77, 278
plasmon, 161
polar decomposition, 451
polarizability density, 15, 24
polarization, 402

circular, 18, 26
(-dependent) splitting, 183, 194
linear, 18
macroscopic, 182, 184, 186, 192
operator, 178–181, 184
power expansion, 165–166
single-particle operator, 178

polydispersity, 228
polymer, 210, 215, 221, 225–226, 231
pore, 321, 335, 339, 353, 356, 358–361,

367, 369
porosity, 14, 24
positive operator-valued measure, 407
positivity-preserving maps, 410
potential, 327–329

angle, 329
box, 109

Coulomb, 331
dihedral angle, 330
energy, 210, 222, 227, 327
intramolecular, 329
ionization, 326
Morse, 329
torsion, 330

Potts model, 235, 237–238
privacy amplification, 431
protein, 31, 230–231, 244
pseudo MD-FDTD coupling, 241
pseudopotential method, 131
pulse shaper, 30
Purcell effect, 175, 177
pure state, 400
purification, 452

Q
Q factor, 86, 88
QIP, 405
quadrature weights, 299
quanta, 126
quantization, 111
quantization electromagnetic field, 170,

182, 185
quantum

bit commitment, 432
circuit model, 404
communication, 435
computation, 420
computer, 3, 397–398
correlations, 408
cryptography, 432
dot (QD), 2, 3, 6, 109, 121, 146–147
dot polarization, 183
dot, dipole moment, 193
efficiency, 116
electrodynamics, 147–148, 170–171, 184,

186, 193–194
entropy, 408
error correction, 441
Fourier transform, 399, 429
gate, 404
Hall effect, 112
information, 130, 147, 170
information processing, 3, 397
information theory, 397
key distribution, 397, 430
light, 147, 184, 186, 191–193
measurement, 406
mechanics, 274, 323, 327
optics of nonhomogeneous mediums, 185
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oscillator, 3
teleportation, 434
theory, 406
well, 110
yield, 114

quantum-confined Stark effect, 124
quasi-continuum method, 233, 261, 295
quasi-momentum, 146, 150
quasi-particle, 133, 146, 167
qubit, 136, 189, 191, 397

R
radiation condition, 157, 159, 171
radiative

decay, 173, 177
life time, 127, 193
recombination, 115

Rahman-Stillinger potential, 216
rarefaction, 335–336
Rayleigh–Ritz method, 278
Rayleigh-Wood anomaly, 29
reactive empirical bond-order potential, 216
real-time MD-FDTD coupling, 241
reciprocal lattice, 66–67
reduced density matrix, 437
reference state, 297
reflectance, 17, 21, 26, 56
refractive index, 51, 57–59, 341–342
relative entropy, 437
relaxation, 153–154, 167, 183
relaxation time, 130, 154, 168–169, 183
relaxation-time approximation, 153, 167,

174
representative atom, 298
reptation, 225
reversibility, 403
rigidity, 258
rotation dyadic, 11–13, 22
rugate filter, 29

S
s-polarization, 48, 77, 81
scale parity, 243
scaled coordinates, 215
scanning near-field optical microscope, 121
scanning tunneling microscopy, 112, 257
scattered power density, 161
Schmidt decomposition, 451
Schrödinger equation, 274, 323, 405
sculptured nematic thin film, 10, 16, 22, 24,

29
sculptured thin film, 2, 10

chiral, 9–10, 12, 17, 24, 26, 31

second-harmonic generation, 32, 62–63
secret sharing, 433
secure distributed computing, 433
self-assembly, 113, 208, 210–221,

225–226, 230, 367
quantum dot, 113

semi-classical approximation, 167
semiconductor, 3, 6, 7, 30
semiempirical method, 323–324
semimetal, 150
serial multiscale method, 233
SETTLE, 330
SHAKE, 330
Shannon entropy, 409
shape function, 14, 24, 271
Shor’s algorithm, 425
silicon oxide, 6
silicon-on-insulator (SOI) wafer, 116
Simon’s algorithm, 428
simple cubic (SC) lattice, 73, 75–76, 80–81
simulation methods, deterministic, 208, 210
simulation methods, stochastic, 208, 221
single electron

pump, 128
transistor, 123, 128

single-photon source, 136
single-photon state, 192
singular value decomposition, 451
slip, 321

coefficient, 352
length, 352, 354

slow-wave coefficient, 157–158
slowly varying amplitude approximation,

61–62, 182
smoothing function, 331
solid body, 262
spatial confinement of charge carrier, 146
spatial dispersion, 153, 156
spatial wave function, 453
spectral

broadening, 130
hole, 28
line, 119

spin, 397, 403
spin-splitting, 125
spontaneous decay, 172–173, 175, 177
spontaneous emission, 171
spontaneous radiation, 171, 175, 177
sputtering, 8
square lattice, 72, 84
stabilizer code, 444
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stabilizer groups, 420
stacking fault, 284
Stark effect, 124
Stark frequency, 164, 168
Stark harmonics, 169
statically determinate problems, 265
stationary state, 275
statistical mechanics, 290
steered molecular dynamics, 334
stiffness matrix, 272
Stillinger-Weber potential, 216
stop band, 47
strain, 234, 240, 262, 265
strain displacement relation, 270
strain-induced quantum dot, 118
Stranski-Krastanow mode, 117
strawberries, 256
streak camera, 119
stress, 210, 216, 234, 239–242, 262,

264–265
strong confinement regime, 179, 181, 193
structural handedness, 22, 23, 30
substrate, 7
superhelix, 10
superlattice, 111
superposition, 398
surface current density, 153, 154, 156,

163–168
surface force, 263, 339–341, 344, 347, 365
surface tension, 345, 348, 350, 357
surface wave, 157–159, 173, 175

dispersion relation for, 157
nanowaveguide, 158–159

surfactant, 210, 221, 224–229
susceptibility, nonlinear, 153
SWAP gate, 404, 446

T
tantalum oxide, 32
teleportation, 434
tensors, 261
Tersoff potential, 216–217, 220
Tersoff–Brenner potential, 287
thermodynamic limit, 208–209
thermodynamic potential, 290
thermodynamic property, 222–223
thermostat, 209, 215, 217

Andersen, 212
Hoover’s constraint, 212, 218
momentum rescaling, 212, 218
Nosé-Hoover, 212, 217

thin film, 2

third harmonic, 164–166
third-order polarization, 165
three-body potential, 286
tight-binding approximation, 131,

151–152, 217–218
time-evolution, 405
titanium oxide, 26
trace, 450
trace-preserving maps, 410
traction, 263
transfer matrix, 19, 47, 53, 55–56, 77,

79–82
transition, 126, 223–224
transmission electron microscope, 112, 342
transmittance, 17, 21, 26, 56, 58
transverse electric (TE) modes, 84
transverse magnetic (TM) modes, 84,

86–87
transverse quantization, 152, 155
traveling wave, 156
triangular lattice, 67, 70–73, 84–88
tubulin, 230
tunneling, 111, 163, 167

U
unconditional security, 431
uncoupled modes, 71–73, 81
uniaxiality, 22
unit vector

binormal, 11
normal, 11
tangential, 11

universal binding energy relation, 286
universal computation, 446
unsorted search, 422

V
vector wave equations, 48, 64
Verlet algorithm, 293–294
vertical quantum dot, 115
vertical-cavity surface-emitting quantum

dot laser, 134
virial, 215
virus, 31
visco-elastic fluid, 131
void, 14
von Neumann entropy, 408
von Neumann measurement, 406–407

W
warping, 310
wave

function, 112, 275, 323
number, 18
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packet, 240–241
propagation, electromagnetic, 16, 24
vector, 65–66, 71–72, 75–77, 86

wavelet transform, 234, 237
wetting, 347–349, 351–352, 354
Wiener–Hopf technique, 159

Wigner crystal, 132
Wronskian, 52–53

Z
Zeeman shift, 125
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